

Welcome to Metagenomic framework’s documentation!

Contents:

	Introduction
	Citing

	Links

	Installation
	Docker Instance (with Jupyter Notebook)

	Requirements

	Using pip

	Running Tests

	Building Documentation

	Troubleshooting

	Notes

	Metagenomic Pipeline
	Tutorial

	Tutorial - Exploring the Data

	Profile a Community with BLAST

	Gene Prediction

	Scripts Details
	blast2gff - Convert BLAST output to GFF

	filter-gff - Filter GFF annotations

	add-gff-info - Add informations to GFF annotations

	get-gff-info - Extract informations to GFF annotations

	hmmer2gff - Convert HMMER output to GFF

	snp_parser - SNPs analysis

	Download Taxonomy

	Download Accession/TaxonID

	taxon-utils - Taxonomy Utilities

	fasta-utils - Fasta Utilities

	fastq-utils - Fastq Utilities

	json2gff - Convert JSON to GFF

	sampling-utils - Resampling Utilities

	Example Notebooks
	Abundance Plots

	Boxplots

	Heatmaps

	Misc. Plots Tips

	Examples of the mgkit.db package

	MGKit GFF Specifications
	Reserved Values

	Library Reference
	mgkit package

	mgkit.align module

	mgkit.consts module

	mgkit.counts package

	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

	mgkit.db package

	mgkit.db.dbm module

	mgkit.db.mongo module

	mgkit.filter package

	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

	mgkit.graphs module

	mgkit.io package

	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

	mgkit.kegg module

	mgkit.logger module

	mgkit.mappings package

	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

	mgkit.net package

	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

	mgkit.plots package

	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

	mgkit.simple_cache module

	mgkit.snps package

	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

	mgkit.taxon module

	mgkit.utils package

	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

	mgkit.workflow package

	mgkit.workflow.add_gff_info module

	mgkit.workflow.blast2gff module

	mgkit.workflow.extract_gff_info module

	mgkit.workflow.fasta_utils module

	mgkit.workflow.fastq_utils module

	mgkit.workflow.filter_gff module

	mgkit.workflow.hmmer2gff module

	mgkit.workflow.json2gff module

	mgkit.workflow.sampling_utils module

	mgkit.workflow.snp_parser module

	mgkit.workflow.taxon_utils module

	mgkit.workflow.utils module

	mgkit

	Changes
	0.4.0

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.5

	0.2.4

	0.2.3

	0.2.2

	0.2.1

	0.2.0

	0.1.16

	0.1.15

	0.1.14

	0.1.13

	0.1.12

	0.1.11

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The aim of this library 1 is to provide a series of useful modules and packages to make it easier to build custom pipelines for metagenomics or any kind of bioinformatics analysis. It integrates other well known python libraries in bioinformatics, like HTSeq [http://www-huber.embl.de/users/anders/HTSeq/], pysam [https://code.google.com/p/pysam/], numpy [http://www.numpy.org] and scipy [http://www.scipy.org].

A tutorial pipeline is provided in the Documentation [http://pythonhosted.org//mgkit/pipeline/tutorial.html].

A discussion mailing list is available at mgkit-users [https://groups.google.com/forum/#!forum/mgkit-users].

Citing

Rubino, F. and Creevey, C.J. 2014. MGkit: Metagenomic Framework For The Study Of Microbial Communities. . Available at: figshare [http://figshare.com/articles/MGkit_Metagenomic_Framework_For_The_Study_Of_Microbial_Communities/1269288] [doi:10.6084/m9.figshare.1269288].`

a citation is also available using the mgkit.cite() function or using the –cite option on all scripts included. For example:

blast2gff --cite

Links

	1

	https://bitbucket.org/setsuna80/mgkit

Installation

Docker Instance (with Jupyter Notebook)

A preconfigured Docker instance (user: mgkit, no password) has been configured at Docker Hub [https://hub.docker.com/r/frubino/mgkit/], including more packages for testing, available at Docker Hub (frubino/mgkit), with more instruction on its use available there. The version of MGKit targeted is the last development branch, but can be customised using the files available at github [https://github.com/frubino/mgkit-docker-repo], specifically in the bootstrap.sh file.

Warning

The preferred version of Python to use is >=3.5 as this is the one I’m using MGKit with and Python 2.7 will not be mantained anymore starting with 1st January 2020. From MGKit 0.3.4 support for Python 3 was added and from 0.4.x you can expect Python 2.7 supoort to be gradually removed.

Requirements

The library has been ported to Python 3 (tested under version 3.5), but a layer of compatibility with Python 2.7 is used (the future package). Forward, version 0.3.4 is the last one that targets primarly Python 2.7 (but is partially compatible with Python 3). To test the version of Python installed use:

$ python --version

To

$ pip install mgkit

Note

enum34 is installed with Python version < 3.4

Using pip

All dependencies are usually installed either through a package system provided by the running OS or through the pip [http://www.pip-installer.org/] installer. If you’re using a system that’s shared with other people, you may not be able to install the dependencies system-wide, in which case the –user option in pip may solve the problem 1.

A system-wide installation with pip can be done with:

$ pip install path/to/library

while a user install is done with:

$ pip install --user path/to/library

all requirements will be downloaded/installed.

Using venv

venv is a system that is used to isolate a Python installation, to make sure no conflicts arise with multiple packages. It’s handy if you’re developing or testing an application/library, as it provides a clean environment. It is a Python 3 module (available as python3-venv in Ubuntu).

Assuming you’ve already installed virtualenv, a virtual environment can be created with:

$ python3 -m venv mgkit-env

which creates a virtual environment in mgkit-env, with the interpreter used being the one linked to python2. Activating the environment requires using:

$ source mgkit-env/bin/activate

assuming you’re in the same directory where you created the environment. The pip packager is installed by default with it, so we’re going to use it to install the library if you have downloaded it already:

$ pip install path/to/library

or getting the last version from PyPI [https://pypi.python.org/pypi]:

$ pip install mgkit

You can also install a specific version:

$ pip install mgkit==0.2.0

Using the repository

The source code can also be obtained from the Bitbucket repository [https://bitbucket.org/setsuna80/mgkit].

Running Tests

The tests requires the pytest package and some plugins (pytest-datadir and pytest-console-scripts):

$ pip install pytest pytest-datadir pytest-console-scripts

You can run the tests with:

$ python setup.py test

Some test won’t be run if the required library/data is not found. Consult the output for more information.

Building Documentation

The requirements are detailed in docs_req.txt of the repository. Other libraries:

	latex (for pdf output - make latexpdf)

Troubleshooting

Some of the dependencies require available compilers to finish the installation. At the mimimum a system that provides the full GNU compiler suite, including a fortran compiler is required to install those dependencies by source.

If a compilation error is raised during installation, it’s adviced to install each dependency manually. I’ll try to keep this section updated, but there’s not that many OS that I can keep working on (mostly MacOSX and GNU/Linux).

MacOSX

Version 10.19 of MacOSX comes with Python 2.7 installed. To install every dependency from source, however it’s needed to install the Xcode app from the App Store which install the compilers, with the exception of gfortran. Another solution is using Homebrew [http://brew.sh] or Macports [http://www.macports.org], to install the compilers needed.

If you want to use Xcode, you need to install the gfortran compiler, with the package provided here [http://gcc.gnu.org/wiki/GFortranBinariesMacOS]. This should be enough to install most packages from source.

Warning

There seems to be a problem with pandas version 0.13.1 on MacOSX, with a segmentation fault happening when using DataFrames. The 0.14.1 version is the one tested.

Note

if there’s a problem building a python package because of a compile error, dealing with an unknown command line option, use:

export ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future

It’s related to the clang toolchain included with Xcode

Matplotlib

The tricky package to install in MacOSX is actually matplotlib [http://matplotlib.org], with one of many solutions being posted on a disccusion on stackoverflow [http://stackoverflow.com/questions/4092994/unable-to-install-matplotlib-on-mac-os-x]. In our case, installing freetype2 and libpng through Homebrew it’s the less painful:

$ brew install libpng freetype2

Note

If you get a compilation error which refers to freetype2 in the /opt/X11/ I found it easy to delete XQuartz installing matplotlib and then reinstall XQuartz.

Or use:

export PKG_CONFIG_PATH=/usr/local/Cellar/freetype/2.6_1/lib/pkgconfig/:/usr/local/Cellar/libpng/1.6.19/lib/pkgconfig/

Note that the versions may be different.

Installing Scipy from source on Linux

A full description on how to install the scipy on Linux from source can be found at this address [http://www.scipy.org/scipylib/building/linux.html], be aware that the compilation of the math-atlas and lapack libraries takes a long time.

Installation in a virtual environment:

create virtual environment, if needed, otherwise activate the one desired
virtualenv venv
source venv/bin/activate
create temporary directory to compile math-atlas and lapack
mkdir dep-build; cd dep-build
wget http://www.netlib.org/lapack/lapack.tgz
wget http://sourceforge.net/projects/math-atlas/files/Stable/3.10.2/atlas3.10.2.tar.bz2/download
tar xfvj download
cd ATLAS
mkdir build; cd build
../configure -Fa alg -fPIC --with-netlib-lapack-tarfile=../../lapack.tgz --prefix=$VIRTUAL_ENV
make
cd lib; make shared; make ptshared; cd ..
make install

This will compile math-atlas with full lapack support in the virtual environment; change the –prefix=$VIRTUAL_ENV to –prefix=$HOME if you want to install the dependencies in you home directory.

Notes

Not all packages are required to use the part of the library, but it’s
recommended to install all of them. Requirements are bound to change, but pandas, scipy,
numpy, pysam and matplotlib are the bases of the library.

To avoid problems with the system installation, I suggest using the excellent
virtualenv [http://www.virtualenv.org/]. This will avoid problems with
installing packages system-wide and breaking a working installation.

Footnotes

	1

	http://www.pip-installer.org/en/latest/user_guide.html#user-installs

Metagenomic Pipeline

This section detailed information about example pipelines made using the framework

	Tutorial
	Initial setup

	Getting Sequence Data
	Taxonomy Data

	Metagenome Assembly

	Gene Prediction
	Using BLAST

	Using RAPSearch

	Create the GFF
	Taxonomic Refinement

	Complete GFF

	Alignment

	Coverage and SNP Info

	SNP Calling
	bcftools

	Data Preparation
	Diversity Analysis

	Count Data

	Additional Downloads

	Full Bash Script

	Tutorial - Exploring the Data
	Imports

	Download Complete Data

	Read Necessary Data

	Explore Count Data
	Load Taxa Table

	Plots for Top40 Taxa

	Functional Categories

	Enzyme Classification

	Explore Diversity
	Taxa

	Functional Categories

	Enzyme Classification

	Profile a Community with BLAST
	Considerations

	Requirements
	MacOS X

	Download Data
	Assembly

	NCBI nt

	ID to Taxonomy

	NCBI Taxonomy

	Community Profiling
	BLAST

	Convert into a GFF

	Adding the Taxonomic Information

	Filter the GFF

	Getting the Profile

	Gene Prediction
	Prediction Software

	General Procedure

	Functional Prediction
	Generate Profiles

	Filter Annotations

	Taxonomic Prediction
	Last Common Ancestor

	Complete Annotations

	Examples
	Gene Prediction with BLAST+

Changed in version 0.3.4: updates

Tutorial

The aim of this tutorial is to show how to build a pipeline to analyse metagenomic samples. Moreover, the SNPs calling part was made to show how diversity estimates can be calculated from metagenomic data, hence it should be changed to be more strict.

We’re going to use Peru Margin Subseafloor Biosphere [https://www.ebi.ac.uk/metagenomics/project/SRP000183] as an example, which can be download from the ENA website.

This tutorial is expected to run on a UNIX (Linux/MacOSX/Solaris), with the bash shell running, because of some of the loops (not tested with other shells).

Note

We assume that all scripts/commands are run in the same directory.

Warning

It is advised to run the tutorial on a cluster/server: the memory requirements for the programs used are quite high (external to the library).

Initial setup

We will assume that the pipeline and it’s relative packages are already installed on the system where the tutorial is run, either through a system-wide install or a virtual environment (advised). The details are in the Installation section of the documentation.

Also for the rest of the tutorial we assume that the following software are installed and accessible system-wide:

	Velvet [https://www.ebi.ac.uk/~zerbino/velvet/]

	Bowtie 2 [http://bowtie-bio.sourceforge.net/bowtie2/]

	samtools and bcftools 1.8 [http://samtools.sourceforge.net]

	Picard Tools [http://picard.sourceforge.net] 1

	GATK [http://www.broadinstitute.org/gatk/] 2

	BLAST [http://www.ncbi.nlm.nih.gov/books/NBK279690/] or RAPSearch2 [http://omics.informatics.indiana.edu/mg/RAPSearch2/]

Getting Sequence Data

The data is stored on the EBI ftp as well, and can be downloaded with the following command (on Linux):

$ wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001326/SRR001326.fastq.gz
$ wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001325/SRR001325.fastq.gz
$ wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001323/SRR001323.fastq.gz
$ wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001322/SRR001322.fastq.gz

on MacOSX you can replace wget with curl -O.

And then uncompress with:

$ gunzip *.fastq.gz

Taxonomy Data

We only need the taxonomy for an optional part of the gene prediction for the analysis. It can be downloaded using the command:

$ download-taxonomy.sh

The data will be saved in the file taxonomy.pickle to which we’ll refer from now on. More information can be found in Download Taxonomy

Metagenome Assembly

We’re going to use velvet to assemble the metagenomics sample, using the following commands in bash:

$ velveth velvet_work 31 -fmtAuto *.fastq
$ velvetg velvet_work -min_contig_lgth 50

The contigs are in the velvet_work/contigs.fa file. We want to take out some of the information in each sequence header, to make it easier to identify them. We decided to keep only NODE_#, where # is a unique number in the file (e.g. from >NODE_27_length_157_cov_703.121033 we keep only >NODE_27). We used this command in bash:

$ cat velvet_work/contigs.fa | sed -E 's/(>NODE_[0-9]+)_.+/\1/g' > assembly.fa

Alternatively, fasta-utils uid can be used to avoid problems with spaces in the headers:

$ fasta-utils uid cat velvet_work/contigs.fa assembly.fa

Gene Prediction

Gene prediction can be done with any software that supports the tab format that BLAST outputs. Besides BLAST, RAPSearch can be used as well.

Before that a suitable DB must be downloaded. In this tutorial we’ll use the SwissProt portion of Uniprot <http://www.uniprot.org> that can be downloaded using the following commands:

$ wget ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
$ gunzip uniprot_sprot.fasta.gz

Using BLAST

BLAST needs the DB to be indexed using the following command:

$ makeblastdb -dbtype prot -in uniprot_sprot.fasta

After which BLAST can be run:

$ blastx -query assembly.fasta -db uniprot_sprot.fasta -out \
 assembly.uniprot.tab -outfmt 6

Using RAPSearch

RAPSearch is faster than BLAST, while giving similar results. As with BLAST, there is a command to be executed before it can predict genes:

$ prerapsearch -d uniprot_sprot.fasta -n uniprot_sprot

After this command is complete its execution, RAPSearch can be started:

$ rapsearch -q assembly.fa -d uniprot_sprot -o assembly.uniprot.tab

RAPSearch will produce two files, assembly.uniprot.tab.m8 and assembly.uniprot.tab.aln. assembly.uniprot.tab.m8 is the file in the correct format, so we can rename it and remove the other one:

$ rm assembly.uniprot.tab.aln
$ mv assembly.uniprot.tab.m8 assembly.uniprot.tab

Create the GFF

After BLAST or RAPSearch are finished, we can convert all predictions to a GFF file:

$ blast2gff uniprot -b 40 -db UNIPROT-SP -dbq 10 assembly.uniprot.tab \
 assembly.uniprot.gff

And then, because the number of annotations is high, we filter them to reduce the number of overlapping annotations:

$ filter-gff overlap assembly.uniprot.gff assembly.uniprot-filt.gff

This will result in a smaller file. Both script supports piping, so they can be used together, for example to save a compressed file:

$ blast2gff uniprot -b 40 -db UNIPROT-SP -dbq 10 assembly.uniprot.tab | \
 filter-gff overlap - assembly.uniprot-filt.gff

Finally, rename the filtered GFF file:

$ mv assembly.uniprot-filt.gff assembly.uniprot.gff

Warning

filter-gff may require a lot of memory, so it’s recommended to read its documentation for strategies on lowering the memory requirements for big datasets (a small script to sort a GFF is included sort-gff.sh)

Taxonomic Refinement

This section is optional, as taxonomic identifiers are assigned using Uniprot, but it can result in better identification. It requires the the nt database from NCBI to be found on the system, in the ncbi-db directory.

if you don’t have the nt database installed, it can be downloaded (> 80GB uncompressed, about 30 compressed) with this command (you’ll need to install ncftpget):

$ mkdir ncbi-db
$ cd ncbi-db
$ ncftpget ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt*.gz
$ tar xfvz *.tar.gz
$ cd ..

To do it, first the nucleotide sequences must be extracted and then use blastn against the nt database:

$ get-gff-info sequence -f assembly.fa assembly.uniprot.gff \
 assembly.uniprot.frag.fasta
$ blastn -query assembly.uniprot.frag.fasta -db ncbi-db/nt -out \
 assembly.uniprot.frag.tab -outfmt 6

After BLAST completes, we need to download supporting file to associate the results with the taxonomic information:

$ download-ncbi-taxa.sh
$ gunzip -c ncbi-nucl-taxa.gz | taxon-utils to_hdf -n nt

We now need to run the taxon-utils (taxon-utils - Taxonomy Utilities) script to find the LCA for each annotation. BLAST will output too many matches, so we want to also filter this file first, with filter-gff. First we convert into GFF the BLAST tab file, then use filter-gff to pick only the 95% quantile of hit length out of all hits and finally filter to get the 95% of identities. Finally run taxon-utils to get the LCA table:

$ blast2gff blastdb -i 3 -r assembly.uniprot.frag.tab | \
 filter-gff sequence -t -a length -f quantile -l 0.95 -c gt | \
 filter-gff sequence -t -a identity -f quantile -l 0.95 -c gt | \
 add-gff-info addtaxa -f taxa-table.hf5:nt | \
 taxon-utils lca -b 40 -t taxonomy.pickle -s -p - lca.tab

What we do is convert the BLAST results into a GFF file, removing the version information from the accession. Then filter the GFF keeping only the annotation which are in the top 5% of indentity scores, but also use only annotations that have a bitscore of 40 and write the result as a 2 columns table.

We can now run the script to add the taxonomic information to the GFF file, with:

$ add-gff-info addtaxa -v -t lca.tab -a seq_id -db NCBI-NT \
 assembly.uniprot.gff assembly.uniprot-taxa.gff

after it completes, it is safe to rename the output GFF:

$ mv assembly.uniprot-taxa.gff assembly.uniprot.gff

Complete GFF

To add the remaining information, mapping to KO [http://www.kegg.jp] and others, including the taxonomic information, a script is provided that downloads this information into a GFF file:

$ add-gff-info uniprot --buffer 500 -t -e -ec -ko \
 assembly.uniprot.gff assembly.uniprot-final.gff

After which we can rename the GFF file:

$ mv assembly.uniprot-final.gff assembly.uniprot.gff

Alignment

The alignment of all reads to the assembly we’ll be made with bowtie2. The first step is to build the index for the reference (out assembly) with the following command:

$ bowtie2-build assembly.fa assembly.fa

and subsequently start the alignment, using bowtie2 and piping the output SAM file to samtools to convert it into BAM files with this command:

for file in *.fastq; do
 BASENAME=`basename $file .fastq`
 bowtie2 -N 1 -x assembly.fa -U $file \
 --very-sensitive-local \
 --rg-id $BASENAME --rg PL:454 --rg PU:454 \
 --rg SM:$BASENAME | samtools view -Sb - > $BASENAME.bam;
done

We’ll have BAM files which we need to sort and index:

for file in *.bam; do
 samtools sort -o `basename $file .bam`-sort.bam $file;
 mv `basename $file .bam`-sort.bam $file
 samtools index $file;
done

Coverage and SNP Info

The coverage information is added to the GFF and needs to be added for later SNP analysis, including information about the expected number of synonymous and non-synonymous changes. The following lines can do it, using one of the scripts included with the library:

$ export SAMPLES=$(for file in *.bam; do echo -a `basename $file .bam`,$file ;done)
$ add-gff-info coverage $SAMPLES assembly.uniprot.gff | add-gff-info \
 exp_syn -r assembly.fa > assembly.uniprot-update.gff

$ mv assembly.uniprot-update.gff assembly.uniprot.gff
$ unset SAMPLES

The first line prepares part of the command line for the script and stores it into an environment variable, while the last command unsets the variable, as it’s not needed anymore. The second command adds the expected number of synonymous and non-synonymous changes for each annotation.

A faster way to add the coverage to a GFF file is to use the cov_samtools command instead:

$ for x in *.bam; do samtools depth -aa $x > `basename $x .bam`.depth; done
$ add-gff-info cov_samtools $(for file in *.depth; do echo -s `basename $file .depth` -d $file ;done) assembly.uniprot.gff assembly.uniprot-update.gff
$ mv assembly.uniprot-update.gff assembly.uniprot.gff

This requires the creation of depth files from samtools, which can be fairly big. The script will accept files compressed with gzip, bzip2 (and xz if the module is available), but will be slower. For this tutorial, each uncompressed depth file is aboud 110MB.

The coverage command memory footprint is tied to the GFF file (kept in memory). The cov_samtools reads the depth information one line at a time and keeps a numpy array for each sequence in memory (and each sample), while the GFF is streamed.

SNP Calling

bcftools

For calling SNPs, we can use bcftools (v 1.8 was tested)

bcftools mpileup -f assembly.fa -Ou *.bam | bcftools call -m -v -O v --ploidy 1 -A -o assembly.vcf

Data Preparation

Diversity Analysis

To use diversity estimates (pN/pS) for the data, we need to first first is aggregate all SNP information from the vcf file into data structures that can be read and analysed by the library. This can be done using the included script snp_parser, with this lines of bash:

$ export SAMPLES=$(for file in *.bam; do echo -m `basename $file .bam`;done)
$ snp_parser -s -v -g assembly.uniprot.gff -p assembly.vcf -a assembly.fa $SAMPLES
$ unset SAMPLES

Note

The -s options must be added if the VCF file was created with bcftools

Count Data

To evaluate the abundance of taxa and functional categories in the data we need to produce one file for each sample using htseq-count, from the HTSeq library.

for file in *.bam; do
 htseq-count -f bam -r pos -s no -t CDS -i uid -a 8 \
 -m intersection-nonempty $file assembly.uniprot.gff \
 > `basename $file .bam`-counts.txt
done

And to add the counts to the GFF file:

$ add-gff-info counts `for x in *.bam; do echo -s $(basename $x .bam); done` \
 `for x in *-counts.txt; do echo -c $x; done` assembly.uniprot.gff tmp.gff
$ mv tmp.gff assembly.uniprot.gff

Alternatively featureCounts from the subread package can be used:

$ featureCounts -a assembly.uniprot.gff -g uid -O -t CDS -o counts-featureCounts.txt *.bam

And adding it to the GFF is similar:

$ add-gff-info counts `for x in *.bam; do echo -s $(basename $x .bam); done` -c counts-featureCounts.txt -e assembly.uniprot.gff tmp.gff
$ mv tmp.gff assembly.uniprot.gff

Note however that there will be one file only made by featureCounts and that is allowed when using add-gff-info counts when the -e option is passed.

Additional Downloads

The following files needs to be downloaded to analyse the functional categories in the following script:

$ wget http://eggnog.embl.de/version_3.0/data/downloads/COG.members.txt.gz
$ wget http://eggnog.embl.de/version_3.0/data/downloads/NOG.members.txt.gz
$ wget http://eggnog.embl.de/version_3.0/data/downloads/COG.funccat.txt.gz
$ wget http://eggnog.embl.de/version_3.0/data/downloads/NOG.funccat.txt.gz

and this for Enzyme Classification:

$ wget ftp://ftp.expasy.org/databases/enzyme/enzclass.txt

Full Bash Script

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

	#!/bin/bash

#download data
#50 meters
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001326/SRR001326.fastq.gz
#1 meter
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001325/SRR001325.fastq.gz
#32 meters
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001323/SRR001323.fastq.gz
#16 meters
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001322/SRR001322.fastq.gz
#uncompress data
gunzip -v *.fastq.gz

#assembly - preparatory phase
velveth velvet_work 31 -fmtAuto *.fastq
#assembly
velvetg velvet_work -min_contig_lgth 50
#change sequence names
cat velvet_work/contigs.fa | sed -E 's/(>NODE_[0-9]+)_.+/\1/g' > assembly.fa
#alternative
#fasta-utils uid cat velvet_work/contigs.fa assembly.fa
#remove velvet working directory
rm -R velvet_work

#To use the LCA option and other analysis we need a taxonomy file
download-taxonomy.sh

#Uniprot SwissProt DB
wget ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
#Uncompress it
gunzip uniprot_sprot.fasta.gz

########
#Gene prediction

###BLAST
#index Uniprot
makeblastdb -dbtype prot -in uniprot_sprot.fasta
#Run blastx
blastx -query assembly.fa -db uniprot_sprot.fasta -out \
	assembly.uniprot.tab -outfmt 6

###RAPSearch
#Index
prerapsearch -d uniprot_sprot.fasta -n uniprot_sprot
#Run
rapsearch -q assembly.fa -d uniprot_sprot -o assembly.uniprot.tab
#rename .m8 file to assembly.uniprot.tab and delete .aln
#rm assembly.uniprot.tab.aln
#mv assembly.uniprot.tab.m8 assembly.uniprot.tab

########
#Converts gene prediction into GFF annotations
blast2gff uniprot -b 40 -db UNIPROT-SP -dbq 10 assembly.uniprot.tab \
	assembly.uniprot.gff
filter-gff overlap assembly.uniprot.gff assembly.uniprot-filt.gff
#rename the new filtered file
mv assembly.uniprot-filt.gff assembly.uniprot.gff

########
#Taxonomic refinement - requires NCBI nt DB installed and indexed
export NCBINT_DIR=ncbi-db
if [-d "$NCBINT_DIR"]; then
	echo "Taxonomic refinement";
	#Extract annotations sequences
	get-gff-info sequence -f assembly.fa assembly.uniprot.gff \
 assembly.uniprot.frag.fasta
	#Use blastn to match against NCBI NT
	blastn -query assembly.uniprot.frag.fasta -db ncbi-db/nt -out \
		assembly.uniprot.frag.tab -outfmt 6

	#Download necessary data
	download-ncbi-taxa.sh
	gunzip -c ncbi-nucl-taxa.gz | taxon-utils to_hdf -n nt

	# Get the LCA for the sequences
	blast2gff blastdb -i 3 -r assembly.uniprot.frag.tab | \
 filter-gff sequence -t -a length -f quantile -l 0.95 -c gt | \
 filter-gff sequence -t -a identity -f quantile -l 0.95 -c gt | \
 add-gff-info addtaxa -f taxa-table.hf5:nt | \
 taxon-utils lca -b 40 -t taxonomy.pickle -s -p - lca.tab

	# Add the LCA info to the GFF
	add-gff-info addtaxa -v -t lca.tab -a seq_id -db NCBI-NT \
 assembly.uniprot.gff assembly.uniprot-taxa.gff

	#rename the file to continue the script
	mv assembly.uniprot-taxa.gff assembly.uniprot.gff
fi
unset NCBINT_DIR

########
#Finalise information from Gene Prediction
#Adds remaining taxonomy, EC numbers, KO and eggNOG mappings
add-gff-info uniprot --buffer 500 -t -e -ec -ko \
	assembly.uniprot.gff assembly.uniprot-final.gff
#Rename the GFF
mv assembly.uniprot-final.gff assembly.uniprot.gff

########
#Alignments
bowtie2-build assembly.fa assembly.fa
for file in *.fastq; do
	BASENAME=`basename $file .fastq`;
	bowtie2 -N 1 -x assembly.fasta -U $file \
	--very-sensitive-local \
	--rg-id $BASENAME --rg PL:454 --rg PU:454 \
	--rg SM:$BASENAME | samtools view -Sb - > $BASENAME.bam;
done
#sort and index BAM files with samtools
for file in *.bam; do
	samtools sort $file `basename $file .bam`-sort;
	#removes the unsorted file, it's not needed
	mv `basename $file .bam`-sort.bam $file
	samtools index $file;
done

########
#Add coverage and expected changes to GFF file
#export SAMPLES=$(for file in *.bam; do echo -a `basename $file .bam`,$file ;done)
#Coverage info
#add-gff-info coverage $SAMPLES assembly.uniprot.gff | add-gff-info \
#	exp_syn -r assembly.fa > assembly.uniprot-update.gff
#rename to continue the script
#mv assembly.uniprot-update.gff assembly.uniprot.gff
#unset SAMPLES
#Faster
for x in *.bam; do samtools depth -aa $x > `basename $x .bam`.depth; done
add-gff-info cov_samtools $(for file in *.depth; do echo -s `basename file .depth` -d $file ;done) assembly.uniprot.gff assembly.uniprot-update.gff
mv assembly.uniprot-update.gff assembly.uniprot.gff

########
#SNP calling using samtools
bcftools mpileup -f assembly.fa -Ou *.bam | bcftools call -v -O v --ploidy 1 -A -o assembly.vcf

#Index fasta with Picard tools - GATK requires it
#java -jar picard-tools/picard.jar CreateSequenceDictionary \
#	R=assembly.fa O=assembly.dict

#merge vcf
#export SAMPLES=$(for file in *.bam.vcf; do echo -V:`basename $file .bam.vcf` $file ;done)
java -Xmx10g -jar GATK/GenomeAnalysisTK.jar \
# 	 -R assembly.fa -T CombineVariants -o assembly.vcf \
# 	 -genotypeMergeOptions UNIQUIFY \
# 	 $SAMPLES
unset SAMPLES

########
#snp_parser
export SAMPLES=$(for file in *.bam; do echo -m `basename $file .bam`;done)
snp_parser -s -v -g assembly.uniprot.gff -p assembly.vcf -a assembly.fa $SAMPLES
unset SAMPLES

########
#Count reads
Using HTSeq
for file in *.bam; do
	htseq-count -f bam -r pos -s no -t CDS -i uid -a 8 \
	-m intersection-nonempty $file assembly.uniprot.gff \
	> `basename $file .bam`-counts.txt
done

Adding counts to GFF
add-gff-info counts `for x in *.bam; do echo -s $(basename $x .bam); done` \
	`for x in *-counts.txt; do echo -c $x; done` assembly.uniprot.gff tmp.gff

mv tmp.gff assembly.uniprot.gff
Using featureCounts
#featureCounts -a assembly.uniprot.gff -g uid -O -t CDS -o counts-featureCounts.txt *.bam
#add-gff-info counts `for x in *.bam; do echo -s $(basename $x .bam); done` -c counts-featureCounts.txt -e assembly.uniprot.gff tmp.gff
#mv tmp.gff assembly.uniprot.gff

########
#eggNOG mappings
wget http://eggnog.embl.de/version_3.0/data/downloads/COG.members.txt.gz
wget http://eggnog.embl.de/version_3.0/data/downloads/NOG.members.txt.gz
wget http://eggnog.embl.de/version_3.0/data/downloads/COG.funccat.txt.gz
wget http://eggnog.embl.de/version_3.0/data/downloads/NOG.funccat.txt.gz

########
#EC names
wget ftp://ftp.expasy.org/databases/enzyme/enzclass.txt

Footnotes

	1

	Picard Tools needs to be found in the directory picard-tools in the same directory as this tutorial.

	2

	GATK directory is expected to be called GATK and inside the tutorial directory. It also needs java v1.7.x in newer versions.

Tutorial - Exploring the Data

The following section requires that:

	the tutorial has been completed

	the data from it is in the same directory

In alternative the data required to run this example can be download from figshare [http://files.figshare.com/2598711/tutorial_data.zip] and uncrompressed.

Imports

[1]:

from __future__ import print_function

#Python Standard Library
import glob
import pickle
import sys
import functools
#External Dependencies (install via pip or anaconda)

Check if running interactively or not
import matplotlib as mpl # http://matplotlib.org
from:
http://stackoverflow.com/questions/15411967/how-can-i-check-if-code-is-executed-in-the-ipython-notebook
and
http://stackoverflow.com/questions/15455029/python-matplotlib-agg-vs-interactive-plotting-and-tight-layout
import __main__ as main
if hasattr(main, '__file__'):
 # Non interactive, force the use of Agg backend instead
 # of the default one
 mpl.use('Agg')

import numpy # http://www.numpy.org
import pandas # http://pandas.pydata.org
import seaborn # http://stanford.edu/~mwaskom/software/seaborn/
import scipy # http://www.scipy.org
import matplotlib.pyplot as plt

#MGKit Import
from mgkit.io import gff, fasta
from mgkit.mappings import eggnog
import mgkit.counts, mgkit.taxon, mgkit.snps, mgkit.plots
import mgkit.snps
import mgkit.mappings.enzyme

/home/frubino/mgkit/dev-env/local/lib/python2.7/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
 from pandas.core import datetools

[2]:

mgkit.logger.config_log()

[3]:

mgkit.cite(sys.stdout)

 _| _| _|_|_| _| _| _| _|
 || _|_| _| _| _| _|_|_|_|
 _| _| _| _| _|_| _|_| _| _|
 _| _| _| _| _| _| _| _|
 _| _| _|_|_| _| _| _| _|_|

MGKit Version: 0.3.4

Rubino, F. and Creevey, C.J. (2014).
MGkit: Metagenomic Framework For The Study Of Microbial Communities.

Available at: http://figshare.com/articles/MGkit_Metagenomic_Framework_For_The_Study_Of_Microbial_Communities/1269288

[doi:10.6084/m9.figshare.1269288]

Download Complete Data

If the tutorial can’t be completed, the download data can be downloaded from: %%

[4]:

the following variable is used to indicate where the tutorial data is stored
data_dir = 'tutorial-data/'

Read Necessary Data

[5]:

Keeps a list of the count data file outputted by
htseq-count
counts = glob.glob('{}*-counts.txt'.format(data_dir))

[6]:

This file contains the SNPs information and it is the output
of the snp_parser script
snp_data = pickle.load(open('{}snp_data.pickle'.format(data_dir), 'r'))

[7]:

Taxonomy needs to be download beforehand. It is loaded into an an
instance of mgkit.taxon.UniprotTaxonomy. It is used in filtering
data and to map taxon IDs to different levels in the taxonomy
taxonomy = mgkit.taxon.UniprotTaxonomy('{}/taxonomy.pickle'.format(data_dir))

2018-05-22 14:06:05,570 - INFO - mgkit.taxon->load_data: Loading taxonomy from file tutorial-data//taxonomy.pickle

[8]:

Loads all annotations in a dictionary, with the unique ID (uid) as key
and the mgkit.io.gff.Annotation instance that represent the line in the
GFF file as value
annotations = {x.uid: x for x in gff.parse_gff('{}assembly.uniprot.gff'.format(data_dir))}

2018-05-22 14:06:14,637 - INFO - mgkit.io.gff->parse_gff: Loading GFF from file (tutorial-data/assembly.uniprot.gff)
2018-05-22 14:06:15,578 - INFO - mgkit.io.gff->parse_gff: Read 9136 line from file (tutorial-data/assembly.uniprot.gff)

[9]:

Used to extract the sample ID from the count file names
file_name_to_sample = lambda x: x.rsplit('/')[-1].split('-')[0]

[10]:

Used to rename the DataFrame columns
sample_names = {
 'SRR001326': '50m',
 'SRR001325': '01m',
 'SRR001323': '32m',
 'SRR001322': '16m'
}

Explore Count Data

Load Taxa Table

Build a pandas.DataFrame instance. It is NOT required, but it is easier to manipulate. load_sample_counts_to_taxon returns a pandas.Series instance.

The DataFrame will have the sample names as columns names and the different taxon IDs as rows names. There are 3 different function to map counts and annotations to a pandas.Series instance:

	mgkit.counts.load_sample_counts

	mgkit.counts.load_sample_counts_to_taxon

	mgkit.counts.load_sample_counts_to_genes

The three differs primarly by the index for the pandas.Series they return, which is (gene_id, taxon_id), taxon_id and gene_id, respectively. Another change is the possibility to map a gene_id to another and a taxon_id to a different rank. In this contexts, as it is interesting to assess the abundance of each organism, mgkit.counts.load_sample_counts_to_taxon can be used. It provides a rank parameter that can be changed to map all counts to the order level in this case, but can be
changed to any rank in mgkit.taxon.TAXON_RANKS, for example genus, phylum.

[11]:

taxa_counts = pandas.DataFrame({
 # Get the sample names
 file_name_to_sample(file_name): mgkit.counts.load_sample_counts_to_taxon(
 # A function accept a uid as only parameter and returns only the
 # gene_id and taxon_id, so we set it to a lambda that does
 # exactly that
 lambda x: (annotations[x].gene_id, annotations[x].taxon_id),
 # An iterator that yields (uid, count) is needed and MGKit
 # has a function that does that for htseq-count files.
 # This can be adapted to any count data file format
 mgkit.counts.load_htseq_counts(file_name),
 # A mgkit.taxon.UniprotTaxonomy instance is necessary to filter
 # the data and map it to a different rank
 taxonomy,
 # A taxonomic rank to map each taxon_id to. Must be lowercase
 rank='order',
 # If False, any taxon_id that can not be resolved at the taxonomic
 # rank requested is excluded from the results
 include_higher=False
)
 # iterate over all count files
 for file_name in counts
})

2018-05-22 14:06:15,644 - INFO - mgkit.counts.func->load_htseq_counts: Loading HTSeq-count file tutorial-data/SRR001322-counts.txt
2018-05-22 14:06:15,733 - INFO - mgkit.counts.func->load_htseq_counts: Loading HTSeq-count file tutorial-data/SRR001323-counts.txt
2018-05-22 14:06:15,837 - INFO - mgkit.counts.func->load_htseq_counts: Loading HTSeq-count file tutorial-data/SRR001325-counts.txt
2018-05-22 14:06:15,921 - INFO - mgkit.counts.func->load_htseq_counts: Loading HTSeq-count file tutorial-data/SRR001326-counts.txt

[12]:

This is an alternative if the counts are stored in the annotations
ann_func = functools.partial(
taxonomy.get_ranked_id,
rank='order',
it=True,
include_higher=False
)
taxa_counts = mgkit.counts.func.from_gff(annotations.values(), sample_names, ann_func=lambda x: ann_func(x.taxon_id))
taxa_counts = taxa_counts[taxa_counts.index.notnull()]

Scaling (DESeq method) and Rename Rows/Columns

Because each sample has different yields in total DNA from the sequencing, the table should be scaled. The are a few approaches, RPKM, scaling by the minimum. MGKit offers mgkit.counts.scaling.scale_factor_deseq and mgkit.counts.scaling.scale_rpkm that scale using the DESeq method and RPKM respectively.

[12]:

the DESeq method doesn't require information about the gene length
taxa_counts = mgkit.counts.scale_deseq(taxa_counts)

/home/frubino/mgkit/dev-env/local/lib/python2.7/site-packages/scipy/stats/stats.py:305: RuntimeWarning: divide by zero encountered in log
 log_a = np.log(np.array(a, dtype=dtype))

One of the powers of pandas data structures is the metadata associated and the possibility to modify them with ease. In this case, the columns are named after the sample IDs from ENA and the row names are the taxon IDs. To make it easier to analyse, columns and rows can be renamed and sorted by name and the rows sorted in descending order by the first colum (1 meter).

To rename the columns the dictionary sample_name can be supplied and for the rows the name of each taxon ID can be accessed through the taxonomy instance, because it works as a dictionary and the returned object has a s_name attribute with the scientific name (lowercase).

[13]:

taxa_counts = taxa_counts.rename(
 index=lambda x: taxonomy[x].s_name,
 columns=sample_names
).sort_index(axis='columns')

[14]:

taxa_counts = taxa_counts.loc[taxa_counts.mean(axis='columns').sort_values(ascending=False).index]

[15]:

the *describe* method of a pandas.Series or pandas.DataFrame
gives some insights into the data
taxa_counts.describe()

[15]:

 Profile a Community with BLAST

Profile a Community with BLAST

 blockdiag

 BLAST+

 blast2gff

 GFF filter

 Add Taxonomy

 Taxonomy
 Profile (LCA)

The above diagram shows the process of getting a community profile from a BLAST run against a DB of choice. The choice of DB is up to the user, but any DB that provides a NCBI taxon_id can be used. Such DBs include the ones provided by NCBI (e.g. nt, nr, viral) as well as Uniprot (SwissProt, TrEMBL).

The community profile will use an assembly and we want to assign each of its contigs to taxon. This can be done a BLAST output and a series of scripts that ends with the lca command of the taxon_utils script (taxon-utils - Taxonomy Utilities). lca stands for last common ancestor, which indicates that given a number of taxa, we try to resolve the taxon they all have in common. This can be of any level, from a specific strain to a kingdom, such as Bacteria.

There a cases when there’s no lca that can be resolved and this is due to the way NCBI taxonomy is structured, with multiple top levels, such as cellular organisms, viruses and so on.

Note

Other DB may provide the taxon_id from NCBI, but this should be checked by the user

Considerations

Since the assembly of a metagenome is a time consuming process, the assembly from the hmmer-tutorial tutorial will be used. We’ll try to use all results from the nt DB from NCBI, as well as separate viruses and cellular organisms and resolve the lca for those annotations separately.

Another thing to consider is how to filter the annotations. That’s up to the user to decide which suits the specific task, but these options will be examined:

	filter based on a static threshold, such as > 50 bitscore (using filter-gff values)

	filter based on a dynamically chosen value, keeping only the X top options (using filter-gff sequence)

	filter based on overlap (using filter-gff overlap)

The results may differ, and they are listed from the fastest to the slowest.

Requirements

MGKit should be installed and its scripts can be run from the command line. Refer to the installation for this, but it’s assumed that it was installed with:

$ pip install mgkit[full]

Moreover, the tutorial makes use of UNIX command line utilities, so a version of GNU/Linux, BSD or MacOS X should be used to run this tutorial. *BASH is expected to be the shell running.

The following should be installed as well:

	BLAST+ (blastn will be used)

	ncftp (used to download the NCBI nt DB)

MacOS X

The software requirements can be installed with homebrew, using the following command:

$ brew install ncftp blast

Download Data

Assembly

TODO

NCBI nt

We’ll be using the NCBI nt which will be stored in the ncbi-nt directory. If a copy is already somewhere, just create a symbolic link to that directory, for example:

$ ln -s path-to-the-db ncbi-nt

Otherwise, a copy can be downloaded and prepared with the following commands:

	1
2
3
4
5
6

	$ mkdir ncbi-nt
cd ncbi-nt
ncftpget ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt*.gz
for x in *.tar.gz; do tar xfvz $x ;done
rm *.tar.gz
cd ..

ID to Taxonomy

The following file contains the taxon_id for all the IDs in the NCBI nt DB. It will be used to add taxonomic information before running the lca step:

$ wget ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/nucl_gb.accession2taxid.gz

NCBI Taxonomy

This can be installed using the following script included in MGKit:

$ download-taxonomy.sh

Which will create a file called taxonomy.pickle

Community Profiling

To make the tutorial faster, we’ll filter the assembly file to include only contigs of at least 500bp:

	1
2
3
4
5
6
7

	$ python - <<END
from mgkit.io import fasta
with open('final-contigs-filt.fa', 'w') as f:
 for name, seq in fasta.load_fasta('final-contigs.fa'):
 if len(seq) >= 500:
 fasta.write_fasta_sequence(f, name, seq)
END

BLAST

The blastn command will be used to search for similar sequences in the NCBI nt DB. The following command will create a tab separated file with the results:

$ blastn -query final-contigs-filt.fa -db ncbi-nt/nt -outfmt 6 -out assembly-nt.tab -evalue 0.001

Convert into a GFF

The following command will create a GFF file from the BLAST output:

$ blast2gff blastdb -i 3 -r assembly-nt.tab assembly-nt.gff

We’re using the blastdb command of the blast2gff command, since it gives more control over the way the header file is formatted:

gi|118501159|gb|CP000482.1|

At the moment, the header format of the NCBI nt DB is a | (pipe) list that contains two type of identifiers. The first element is gi, to indicate that the following element (second) is the GI identifier that it’s being retired in September 2016. The third is indicates the DB from where the other ID originates from (GenBank in this case) and the fourth is the identifier that we’ll use.

By default blast2gff blastdb used the second element (118501159) of the header as gene_id, so we use:

	-i 3 to instead use the fourth element (CP000482.1) as gene_id

	-r will remove the versioning information from the gene_id, so CP000482.1 will become CP000482

The reason for this is that the file containing the taxon_id for each identifier is better used with a fourth element of the header without the versioning information.

Adding the Taxonomic Information

The add-gff-info addtaxa command allows to insert taxonomic information (in the GFF taxon_id attribute) into the GFF file. This step integrates the content of the nucl_gb.accession2taxid.gz file with the GFF file. The structure of this file is:

ACCESSION ACCESSION.VERSION TAXONID GI

Warning

this command has to load all the GFF in memory, so a high memory machine should be used (~30GB). The GFF can be split into smaller files to save memory and the subsection here will describe the process.

Since we used the ACCESSION as gene_id, we need to edit the file to pass it to the add-gff-info addtaxa command -t option. This can be don on the fly and the following command adds information to the GFF file created:

$ add-gff-info addtaxa -t <(gunzip -c nucl_gb.accession2taxid.gz | cut -f 1,3) -e assembly-nt.gff assembly-nt-taxa.gff; mv assembly-nt-taxa.gff assembly-nt.gff

The -t option is the file that can contains the taxon_id for each gene_id, the script accept a tab separated file. After the this we rename the output file to keep less files around. The -e option was used to remove from the output file any annotation for which a taxon_id was not found. Since we need them for the LCA later, it makes sense to remove them before filtering.

Reduce Memory Usage

First we need to split the assembly-nt.gff file, with a good option being using the split command in Unix. The following command will create the files:

$ split -l 1000000 -d assembly-nt.gff split-gff

This command will create 12 GFF files (of at most 1 milion lines each), whose names start with split-gff. Since we split the files we can use a loop to add the taxonomic information to all of them:

	1
2
3

	$ for x in split-gff*; do
add-gff-info addtaxa -t <(gunzip -c nucl_gb.accession2taxid.gz | cut -f 1,3) -e $x $x-taxa;
done

This reduces the memory usage to ~2.5GB, but it takes longer to re-read the nucl_gb.accession2taxid.gz 12 times. There are way to parallelise it, but they are beyond the scope of this tutorial.

After the command has finished running, the content of the files can be concatenated into a single file again and delete the split files:

$ cat split-gff*-taxa > assembly-nt.gff; rm split-gff*

Filter the GFF

As mentioned we’ll provide three different way to filter a GFF, before passing it to the script that will output the lca information. This way we can compare the different filtering strategies.

Filter by Value

Let’s assume a scenario where we’re working on reads or very short contigs. We may decide to use a threshold, so the filtering is fast, but doesn’t compromise the quality of the assignment. This can achieved using the filter-gff values command:

$ filter-gff values -b 50 assembly-nt.gff assembly-nt_filt-value.gff

The command will read the GFF file and keep only the hits that are greater than or equal to 50, which we’re assuming is a good compromise for the assignment. This filtering strategy has the advantage of operating on a per-annotation basis, so the memory usage is low and no grouping or calculation is required.

Filter Dynamically

While the above can be give good results, we can think of cases where the number of hits that pass that threshold may be high (e.g. a conserved sequence in multiple organisms). In this case a more sensible choice would be to keep only the hits that are in the top 5-10% of the hits on that contig, all those over the median, mean or any other threshold based on the distribution of a sequence’s hits. The filter-gff sequence command can be used to filter the GFF:

$ filter-gff sequence -t -q .95 -c ge assembly-nt.gff assembly-nt_filt-sequence.gff

The options used will keep only the hits that have a bitscore (evalue and identity can also be used) greater than or equal to the top 5% of the bitscore distribution for that contig.

This threshold will include also contigs that have only one hit (that’s the reason to use -c ge instead of -c gt). We also assume that the input GFF is sorted (-t option) by contig name, to use less memory.

Filter Ovelaps

Let’s assume that in some cases the we think there may be cases where the contig contains regions that different rates of conservation. The first filter may keep too many taxa with similar sequences in a portion of the contig, while the second one may not provide enough coverage of the contig, keeping only the very best hits.

In this case, we can use the filter-gff overlap command to keep of all overlapping hits only the best one. And since we want to make sure that we still have good homology, we could still filter by value the hits, before that filter.

The following command will make that type of filtering:

$ filter-gff values -b 50 assembly-nt.gff | sort -s -k 1,1 -k 7,7 | filter-gff overlap -t -s 1 - assembly-nt_filt-overlap.gff

We just chained the filtering from the values command, keeping only annotations with at least 50 bitscore and passing it to the sort command. This passage is not necessary it the the -t option is not used with filter-gff overlap, but it uses less memory by pre-sorting the GFF by contig/strand first, since the filter-gff overlap works on each strand separately. We also used the -s options to trigger the filter for annotations that overlap for as much as 1 bp.

More information about this type of filter can be found in simple-tutorial and filter-gff - Filter GFF annotations.

Getting the Profile

We’ll have 3 GFF files ending in final.gff, one per each type of filtering, that contain the taxon_id for each annotation they contain.

Note

these files are available at this page [http://bitbucket.org] if you want to skip

Since the filtered files are available now, we can create a file that contains the LCA assignments. We can ouput 2 type of files (see taxon-utils - Taxonomy Utilities), but for the purpose of this tutorial, we’ll get a GFF file that we can also use in a assembly viewer. The command to create them is:

	1
2
3

	$ for x in *filt-*.gff; do
taxon_utils lca -v -t taxonomy.pickle -r final-contigs-filt.fa -s -n `basename $x .gff`-nolca.tab -ft LCA-`echo $x | egrep -o 'value|overlap|sequence' | tr [:lower:] [:upper:]` $x `basename $x .gff`-lca.gff;
done

The options used are:

	-t to direct the script to the taxonomy that we already downloaded

	-r to output a GFF with one annotation per contig that covers the whole sequence

	-s indicates that the input is sorted by reference sequence

	-n outputs a tab separated file with the contigs that could not be assigned

	-ft is used to change the feature type column in the GFF, from the dafault LCA to one which includes the type of filtering used

The file ending in -nolca.tab contain the contigs that could not be assigned, while the files ending in -lca.gff contain the taxonomic assignments, with the taxon_id pointing to the assigned taxon identifier, taxon_name for the taxon scientific name (or common name if none is found) and lineage contains the whole lineage of the taxon.

Using Krona

Besides having a file with the assignments and a GFF that can be used in Tablet, a quick profile can be produced using Krona [https://github.com/marbl/Krona/wiki] and its associated Krona Tools. To produce a file that can be used with Krona Tools the -k can be used with the taxon_utils lca command. An additional option is to give the tool the total number of sequences in the assembly with the -kt option, to have a complete profile of the assembly:

	1
2
3

	$ for x in *filt-{overlap,sequence,value}.gff; do
taxon_utils lca -v -t taxonomy.pickle -k -kt `grep -c '>' final-contigs-filt.fa` -s $x `basename $x .gff`-lca.krona;
done

To the -kt option was passed the total number of sequences (just used grep to count how many headers are in the fasta file).

The produced files with krona extension can be the be used with the ktImportText (or ImportText if Krona Tools were not installed). The -q option of the script must be used:

	1
2
3

	$ for x in *.krona; do
ktImportText -q -o `basename $x .krona`.html $x;
done

This will create an HTML file for each one that can be read in a web browser.

Using Tablet

The GFF created can be used in software such as Tablet [https://ics.hutton.ac.uk/tablet/]. The image below shows a contig with the features loaded from the filtered (overlap) GFF and the GFF LCA file produced by taxon_utils lca.

[image: example of a contig in Tablet with both the LCA GFF and CDS from the overlap filtering loaded]

 Gene Prediction

Gene Prediction

Gene prediction is an essential portion of a metagenomic pipeline, because there is no a priori knowledge of what genes are in the samples. Moreover, a gene must be taxonomically annotated to correlate its function to the taxonomic group it belongs to.

There different ways to predict genes, with some relying on general function domains like the ones from PFam [http://pfam.xfam.org/] or others. This type of collections is very useful in identifying proteins in an unknown sequence. The main drawback for the examined datasets is that it’s not possible to identify the organism but only the general function of a sequence.

A second approach is to use orthologs, genes derived from the same ancestral sequence with their separation originated from a speciation process. As functionality is preserved among them, they are a good choice when approaching samples where multiple organisms are present. Two collections, eggNOG [http://eggnog.embl.de] and Kegg Orthologs [http://www.kegg.jp/kegg/ko.html], are highly curated. A single ortholog gene identifier maps to several genes from different organisms, so the characterisation of an ortholog gene propagate to all its associated genes. This includes links to pathways in the case of Kegg and to functional categories in the case of eggNOG.

These genes are shared between organisms, so a single ortholog gene corresponds to several genes in different organisms. In some cases this is a preferred approach, as it allows a good resolution in the function, especially because this collections are linked to pathways in the case of Kegg and to functional categories in the case of eggNOG. The downside is that the collection of gene is not extensive and it is not connected to a taxonomic identification.

Another approach is to use genes from general public databases, like Uniprot [http://www.uniprot.org]. While more general a collection, compared to Kegg Orthologs or eggNOG, it offers mappings to these two collections, as well as others. It does contain when available taxonomic information of its genes and it is divided into a manually curated portion (SwissProt) and an automated one (TrEMBL). This separation allows to have mixing annotations from both portions while preferentially use the ones from SwissProt.

In general the framework does not enforce one collection over another and in fact ortholog genes were used in one study, while Uniprot genes were used in others.

Prediction Software

The prediction of genes requires both a collection and specific softwares to find homologous sequneces. There are two classes of software that can be used for gene prediction: one is profile based and the second uses similarity search.

An example of software using profile search is HMMER [http://hmmer.janelia.org/]. This approach uses an alignment of similar sequences to create an hidden Markov model (HMM) profile that is used to identify sequences that are similar to said profile. Curated profiles can be created from the eggNOG collection or other collection, but is also possible to automate the process of creating custom profiles.

The similarity search approach, is used in BLAST+ [http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download], where a collection of sequences is first indexed and then all words in the index are searched against the query sequence and the most similar ones are investigated further to report a region of similarity.

General Procedure

 blockdiag

 Functional
 Prediction

 Taxonomic
 Prediction

 Convert to
 GFF

 Filter
 GFF

 Extract
 Sequences

 Complete
 Annotations

 Add Taxonomy
 Information

 Draft GFF

 Final GFF

The end result of the full process is a GFF file [http://www.sequenceontology.org/gff3.shtml] including gene_id taxon_id and uid attributes. This attributes are need to identify univocally the annotation (uid), the gene that was functionally predicted (gene_id) and the organism it belongs to (taxon_id). A more detailed explanation of these attributes and others is in MGKit GFF Specifications.

The choice of the format is based on the fact that it is to manipulate without ad-hoc tools, as it is a text file, and it is accepted as input file by several bioinformatics tools.

Functional Prediction

The first step of the pipeline is to generate functional prediction information of the metagenomic sequences. This can be achieved using any tool of choice, with HMMER and BLAST+ preferred among others. While BLAST+ is being extensively tested, any program that outputs prediction data in the same tab separated format as BLAST+ can be used, including USEARCH [http://www.drive5.com/usearch/] and RAPSearch2 [http://omics.informatics.indiana.edu/mg/RAPSearch2/].

The framework provides two script, one for HMMER output hmmer2gff - Convert HMMER output to GFF and one for BLAST+ tab separated format blast2gff - Convert BLAST output to GFF, to convert predictions to GFF annotations.

Usually a filter on the quality of the prediction is used, with 40 bit as a minimum indication of homology and 60 being a better one. If more than one gene collection is used, for example both SwissProt and TrEMBL, it is advised to keep track of which collection the annotation comes from and giving the chosen collection a quality index (dbq attribute in the GFF), with higher values assigned to preferred collections.

Generate Profiles

Note

More detailed information is in script-download-profiles

The framework provides, via a script and the following guidelines, a way to generate profiles for Kegg Orthologs genes, using Uniprot as repository of sequnece data.

The process of building the profiles to be used with HMMER is a step that involves several tasks:

	download of data

	alignment of sequences

	conversion in HMMER profiles.

The first step involves, for all ortholog genes, to download all sequences available for each taxon level of interest: this will produce a series of file which contain the amino-acid sequences for each tuple gene-taxon. The sequences downloaded are aligned using Clustal Omega [http://www.clustal.org/omega/] and for each alignment a profile is built.

Building profiles in this way, by going through all ortholog genes and choosing the taxon level desired, opens the possibility of incrementally refining the profiling of a metagenome without having to rerun all profiles again, as only the new ones need to be run. Filtering the all the results is a much faster operation.

Filter Annotations

The number of predictions generated by the chosen prediction software can be very high, with a lot of them having just a few base pairs difference. When this involves the same functional prediction, it is safe to use the one with the best score.

However, when multiple genes are predicted on roughly the same region of a sequence, the choice of the annotation to keep is more difficult. Overlapping annotations can be either a weaker prediction, or the result of a chimeric sequence, as it can happen in metagenomic assemblies.

To solve this problem a script (filter-gff) was written that filters annotations when an overlap occurs. The algorithm scans the list of all annotations in a single sequence, sorted by their bit score, trying to find annotations that overlap. The filter is triggered when two annotations overlap, for at least 100bp by default, and the annotation to keep is chosen using a function that maximise three parameters: db quality (dbq), bit score (bitscore) and annotation length, in order of priority. This greatly reduces the number of annotations remaining and keeps the best possible annotations.

The choice of the 100 bp, as default value for an overlap to trigger filtering between two annotations, is based on the comparison of 36 prokaryotic genomes retrieved from UCSC [https://genome.ucsc.edu] gene overlaps.

Archaeal Genomes

	Crenarchaea

	Euryarchaea

	Thaumarchaea

	Acidianus hospitalis

	Archaeoglobus fulgidus

	Cenarchaeum symbiosum

	Desulfurococcus kamchatkensis

	Haloarcula marismortui

	Nitrosopumilus maritimus

	Hyperthermus butylicus

	Methanobrevibacter ruminantium M1

	

	Pyrobaculum islandicum

	Methanobrevibacter smithii

	

	Thermoproteus tenax Kra1

	Thermococcus barophilus MP

	

	
	Thermococcus onnurineus

	

Bacterial Genomes

	Actinobacteria

	Aquificae

	Bacteroidetes

	Proteobacteria

	Spirochaetes

	Acidothermus cellulolyticus 11B

	Aquifex aeolicus

	Bacteroides thetaiotaomicron

	Blochmannia floridanus

	Borrelia burgdorferi

	Bifidobacterium longum

	Hydrogenivirga sp. 128

	Cytophaga hutchinsonii

	Candidatus Carsonella ruddii

	Leptospira interogans

	Mycobacterium tuberculosis

	Hydrogenobaculum 3684

	Gramella forsetii

	Photobacterium profundum

	Treponema pallidum

	Nocardioides JS614

	Persephonella marina

	Salinibacter ruber

	Salmonella typhi

	

	Rhodococcus RHA1

	Sulfurihydrogenbium YO3AOP1

	
	Shewanella oneidensis

	

	Tropheryma whipplei TW08 27

	Sulfurihydrogenibium yellowstonense

	
	Vibrio parahaemolyticus

	

Taxonomic Prediction

When using Uniprot to functionally predict genes in a sequence, the metadata available for the gene may contain taxonomic information. However, while a gene from one species may have been predicted in the data, this prediction may be incorrect. There are various reasons, closely related organisms, lack of specific genes for a class of organisms or annotations, among others.

In this cases the approach taken in the framework is to extract the predicted nucleotide sequences using the tool of choice, provieded that it names the sequences using the uid attribute of an annotation, or the provided script (get-gff-info - Extract informations to GFF annotations). The sequences included in the file can be used with a similarity search program as BLAST to find the closest related sequences.

The collection used for this is the nt database from NCBI and a search against it can provide a better taxonomic assignment. The default behaviour is to take the taxonomic prediction with the highest score. It is recommended to use only predictions with a bit score of 60 or higher.

An included script add-gff-info - Add informations to GFF annotations provides the functionality necessary to add the taxonomic assignments to the GFF file. It also includes a last common ancestor (LCA) algorithm to resolve ambiguous assignments.

Last Common Ancestor

While the default behaviour is to take a prediction with the highest score, this may not be correct if more predictions have similar score. For this reason a last common ancestor (LCA) algorithm can be enabled on the predictions that are a set number of bits from the highest one, with the default value used 10.

The algorithm works by collecting all taxonomic predictions for a sequence, that falls within the chosen threshold, and traversing the taxonomy to find the last common ancestor. If no common ancestor can be found, the taxonomic predictions are discarded.

Complete Annotations

When a GFF file is produced by the framework, it can be integrated with the taxonomic information from Uniprot, if that was the collection used to predict genes.

The process add mapping attributes to the GFF file, with eggNOG and Kegg Orthologs for example, while also completing the taxonomic assignment of annotations that were not assigned taxonomically. This can be done with an included script add-gff-info - Add informations to GFF annotations and the completed GFF can be used for further analysis

Examples

	Gene Prediction with BLAST+
	Functional Prediction

	Filter GFF

	Taxonomic Prediction
	Taxonomic Refinement

	Complete Annotations

 Gene Prediction with BLAST+

Gene Prediction with BLAST+

BLAST is another option to predict genes in a sequence and it is less difficult to set up as it only needs a FASTA file with the collection of genes to use.

The examples here use Uniprot DBs to predict genes, as it enables the mapping to several DBs, including eggNOG and Kegg Orthologs. It also assumes that an assembly has been produced for the gene prediction and that a DB to use blast with is already set up. Also, the BLAST+ package is expected to be installed on the system.

 blockdiag

 BLAST+
 (blastx)

 BLAST+
 (blastn)

 blast2gff

 filter-gff

 get-gff-info

 add-gff-info
 (unipfile)

 add-gff-info
 (taxonomy)

 Draft GFF

 Final GFF

Functional Prediction

Assuming that BLAST is correctly installed and that the Uniprot DB is indexed, the only required parameter required by the scripts is –outfmt 6, which produces the BLAST tab format required by scripts that convert a BLAST output to a GFF blast2gff - Convert BLAST output to GFF. An example of the command line is this:

$ blastx -query assembly.fasta -db uniprot_sprot.fasta -out assembly.uniprot.tab -outfmt 6

This will output a file that can be passed to the GFF creation script, blast2gff, with the following command:

$ blast2gff uniprot -b 40 -db UNIPROT-SP -dbq 10 assembly.uniprot.tab assembly.uniprot.gff

The script documentation blast2gff - Convert BLAST output to GFF offer more information on the parameters. Suffice to say that -b 40 excludes any BLAST hit with a bit score of less than 40 and -dbq 10 point to the DB quality, as per MGKit GFF Specifications, which is important to filter annotations coming from multiple DBs with varying quality.

Filter GFF

The amount of prediction can be huge and most of them are overlapping annotations, so filtering the GFF annotations is important. A script is included to filter annotations (filter-gff - Filter GFF annotations), whose overlap command filters overlapping annotations. An example of the script execution is:

$ filter-gff overlap assembly.uniprot.gff assembly.uniprot-filt.gff

This will considerably reduce the size of the GFF file.

Taxonomic Prediction

Once the functional annotations are filtered, the next step is to assign taxonomic information to them, with the process being a two step process, to further refine the assignments.

The base process is to use the taxonomic assignment associated with the Uniprot ID predicted by BLAST, with a possible refinement of this by using the nucleotidic sequence associated with an annotation, whose similarity is then predicted using BLAST against a large collection of sequences, like the nt DB in NCBI.

Taxonomic Refinement

This part is entirely optional, but should be executed before the next one, to speed the scripts that follow.

First the sequences from the GFF file needs to be extracted with the get-gff-info sequence (get-gff-info - Extract informations to GFF annotations) command; an example execution is:

$ get-gff-info sequence -f assembly.fasta assembly.uniprot.gff assembly.uniprot.frag.fasta

This will output a FASTA file called assembly.uniprot.fasta with the sequences used as query for the blastn command of the BLAST+ package against the nt DB:

$ blastn -query assembly.uniprot.frag.fasta -db nt -out assembly.uniprot.frag.tab -outfmt 6

The ouput file assembly.uniprot.frag.tab is then passed to the taxonomy command of the add-gff-info script to incorporate the assignments information into the GFF file, an example of the execution of this command is the following:

$ add-gff-info taxonomy -t gi_taxid_nucl.dmp.gz -b assembly.uniprot.frag.tab -s 40 -d NCBI-NT assembly.uniprot.gff assembly.uniprot-taxa.gff

More information about the options used can be found at the script documentation (get-gff-info - Extract informations to GFF annotations), with an LCA option being available for assignments.

Complete Annotations

The rest of the taxonomic assignments, if not all, as well as additional informations can be added with uniprot or unipfile commands of the add-gff-info add-gff-info - Add informations to GFF annotations script. The main difference is that the uniprot command may be slower, as it connects to the internet and on a large number of annotations it takes a long time. The unipfile uses a file provided by Uniprot with additional information (in particular the taxonomy).

An example execution of the command is:

$ add-gff-info unipfile -i idmapping.dat.gz -m NCBI_TaxID assembly.uniprot.gff assembly.uniprot-final.gff

Note

if you used the taxonomic refinement, use assembly.uniprot-taxa.gff instead of assembly.uniprot.gff

 Scripts Details

Scripts Details

This section detailed information about the scripts included

	blast2gff - Convert BLAST output to GFF
	Overview
	Uniprot

	BlastDB

	Changes

	Options
	blast2gff

	filter-gff - Filter GFF annotations
	Overview
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	Options
	filter-gff

	add-gff-info - Add informations to GFF annotations
	Overview
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	Options
	add-gff-info

	get-gff-info - Extract informations to GFF annotations
	Overview
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	Options
	get-gff-info

	hmmer2gff - Convert HMMER output to GFF
	Overview
	Changes

	Options
	Named Arguments

	File options

	Filters

	GFF

	snp_parser - SNPs analysis
	Overview

	Script Reference
	Changes

	Options
	Named Arguments

	Download Taxonomy

	Download Accession/TaxonID

	taxon-utils - Taxonomy Utilities
	Overview
	Last Common Ancestor (lca and lca_line)

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	Options
	taxon-utils

	fasta-utils - Fasta Utilities
	Overview
	split command

	translate command

	uid command

	Changes

	Options
	fasta-utils

	fastq-utils - Fastq Utilities
	Overview
	Commands

	Changes

	Options
	fastq-utils

	json2gff - Convert JSON to GFF
	Overview
	mongodb command

	Options
	json2gff

	sampling-utils - Resampling Utilities
	Overview
	Resampling Utilities

	Options
	sampling-utils

 blast2gff - Convert BLAST output to GFF

blast2gff - Convert BLAST output to GFF

Overview

Blast output conversion in GFF requires a BLAST+ tabular format which can be
obtained by using the –outfmt 6 option with the default columns, as
specified in mgkit.io.blast.parse_blast_tab(). The script can get data
from the standard in and ouputs GFF lines on the standard output by default.

Uniprot

The Function mgkit.io.blast.parse_uniprot_blast() is used, which filters
BLAST hits based on bitscore and adds by default a db attribute to the
annotation with the value UNIPROT-SP, indicating that the SwissProt db is
used and a dbq attribute with the value 10. The feature type used in the GFF
is CDS.

 blockdiag

 BLAST+

 parse_uniprot_blast

 GFF

BlastDB

If a BlastDB, such as nt or nr was used, the blastdb command offers
some quick defaults to parse BLAST results.

It now includes options to control the way the sequence header are formatted.
Options to change the separator used, as well as the column used as gene_id.
This was added because at the moment the GI identifier (the second column in
the header) is used, but it’s being phased out in favour of the embl/gb/dbj
(right now the fourth column in the header). This should easy the transition to
the new format and makes it easier to adapt an older pipeline/blastdb to newer
files (like the ID to TAXA files).

The header from the a ncbi-nt header looks like this:

gi|160361034|gb|CP000884.1

This is the default output accepted by the blastdb command. The fields are
separated by | (pipe) and the GI is used (–gene-index 1, since internally
the string is split by the separator and the second element is take - lists
indices are 0-based in Python). This output uses the following options:

--header-sep '|' --gene-index 1

Notice the single quotes to pass the pipe symbol, since bash would interpret
it as pipeing to the next coommand otherwise. This is the default.

In case, for the same header, we want to use the gb identifier, the only
option to be specified is:

--gene-index 3

This will get the fourth element of the header (since we’re splitting by pipe).

As in the uniprot command, the gene_id can be set to use the whole header,
using the -n option. Useful in case the BLAST db that was used was custom
made. While pipe is used in major databases, it was made the default, by if the
db used has different conventions the separator can be changed. There’s also
the options of later changing the gene_id in the output GFF if necessary.

Changes

Changed in version 0.3.4: using click instead of argparse

Changed in version 0.2.6: added -r option to blastdb

Changed in version 0.2.5: added more options to give user control to the blastdb command

New in version 0.2.3: added –fasta-file option, added more data from a blsat hit

New in version 0.2.2: added blastdb command

Changed in version 0.2.1: added -ft option

Changed in version 0.1.13: added -n and -k parameters to uniprot command

New in version 0.1.12.

Options

blast2gff

Main function

blast2gff [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

blastdb

Reads a BLAST output file [blast-file] in tabular format (using -outfmt 6) and
outputs a GFF file [gff-file]

blast2gff blastdb [OPTIONS] [BLAST_FILE] [GFF_FILE]

Options

	
-v, --verbose

	

	
-db, --db-used <db_used>

	blastdb used [default: NCBI-NT]

	
-n, --no-split

	if used, the script assumes that the sequence header will be used as gene_id

	
-s, --header-sep <header_sep>

	The separator for the header, defaults to ‘|’ (pipe) [default: |]

	
-i, --gene-index <gene_index>

	Which of the header columns (0-based) to use as gene_id (defaults to 1 - the second column) [default: 1]

	
-r, --remove-version

	if used, the script removes the version information from the gene_id

	
-a, --fasta-file <fasta_file>

	Optional FASTA file with the query sequences

	
-dbq, --db-quality <db_quality>

	Quality of the DB used [default: 10]

	
-b, --bitscore <bitscore>

	Minimum bitscore to keep the annotation [default: 0.0]

	
-k, --attr-value <attr_value>

	Additional attribute and value to add to each annotation, in the form attr:value

	
-ft, --feat-type <feat_type>

	Feature type to use in the GFF [default: CDS]

	
--progress

	Shows Progress Bar

Arguments

	
BLAST_FILE

	Optional argument

	
GFF_FILE

	Optional argument

uniprot

Reads a BLAST output file [blast-file] in tabular format (using -outfmt 6) from
a Uniprot DB and outputs a GFF file [gff-file]

blast2gff uniprot [OPTIONS] [BLAST_FILE] [GFF_FILE]

Options

	
-v, --verbose

	

	
-db, --db-used <db_used>

	Uniprot database used with BLAST [default: UNIPROT-SP]

	
-n, --no-split

	if used, the script assumes that the sequence header will be used as gene_id

	
-a, --fasta-file <fasta_file>

	Optional FASTA file with the query sequences

	
-dbq, --db-quality <db_quality>

	Quality of the DB used [default: 10]

	
-b, --bitscore <bitscore>

	Minimum bitscore to keep the annotation [default: 0.0]

	
-k, --attr-value <attr_value>

	Additional attribute and value to add to each annotation, in the form attr:value

	
-ft, --feat-type <feat_type>

	Feature type to use in the GFF [default: CDS]

	
--progress

	Shows Progress Bar

Arguments

	
BLAST_FILE

	Optional argument

	
GFF_FILE

	Optional argument

 filter-gff - Filter GFF annotations

filter-gff - Filter GFF annotations

Overview

Filters GFF annotations in different ways.

Value Filtering

Enables filtering of GFF annotations based on the the values of attributes of a
GFF annotation. The filters are based on equality of numbers (internally
converted into float) and strings, a string contained in the value of an attribute
less or greater than are included as well. The length of annotation has the
attribute length and can be tested.

Overlap Filtering

Filters overlapping annotations using the functions
mgkit.filter.gff.choose_annotation() and
mgkit.filter.gff.filter_annotations(), after the annotations are grouped
by both sequence and strand. If the GFF is sorted by sequence name and strand,
the -t can be used to make the filtering use less memory. It can be sorted in
Unix using sort -s -k 1,1 -k 7,7 gff_file, which applies a stable sort using
the sequence name as the first key and the strand as the second key.

Note

It is also recommended to use:

export LC_ALL=C

To speed up the sorting

 blockdiag

 sort

 group_annotations

 GFF

 parse_gff

 filter_annotati
 ons

 Filtered Annotations

The above digram describes the internals of the script.

The annotations needs first to be grouped by seq_id and strand, forming a group
that can be then be passed to mgkit.filter.gff.filter_annotations().
This function:

	sort annotations by bit score, from the highest to the lowest

	loop over all combination of N=2 annotations:

	choose which of the two annotations to discard if they overlap for a
the required amount of bp (defaults to 100bp)

	in which case, the preference is given to the db quality first, than
the bit score and finally the lenght of annotation, the one with the
highest values is kept

While the default behaviour is the same, now it is posible to decided the
function used to discard one the two annotations. It is possible to use the
-c argument to pass a string that defines the function. The string passed must
start with or without a +. Using + translates into the builtin function
max while no + translates into min from the second character on, any
number of attributes can be used, separated by commas. The attributes, however,
must be one of the properties defined in mgkit.io.gff.Annotation,
bitscore that returns the value converted in a float. Internally the
attributes are stored as strings, so for attributes that have no properties in
the class, such as evalue, the float builtin is applied.

The tuples built for both annotations are then passed to the comparison
function to be selected and the value returned by it is discarded. The
order of the elements in the string is important to define the priority
given to each element in the comparison and the leftmost one has the
highesst priority.

Examples of function strings:

	-dbq,bitscore,length becomes max((ann1.dbq, ann1.bitscore, ann1.length),
(ann2.dbq, ann2.bitscore, ann2.length) - This is default and previously
only choice

	-bitscore,length,dbq uses the same elements but gives lowest priority
to dbq

	+evalue: will discard the annotation with the highest evalue

Per Sequence Values

The sequence command allows to filter on a per sequence basis, using
functions such as the median, quantile and mean on attributes like evalue,
bitscore and identity. The file can be passed as sorted already, saving memory
(like in the overlap command), but it’s not needed to sort the file by strand,
only by the first column.

Coverage Filtering

The cov command calculates the coverage of annotations as a measure of the
percentage of each reference sequence length. A minimum coverage percentage can
be used to keep the annotations of sequences that have a greater or equal
coverage than the specified one.

Changes

New in version 0.1.12.

Changed in version 0.1.13: added –sorted option

Changed in version 0.2.0: changed option -c to accept a string to filter overlap

Changed in version 0.2.5: added sequence command

Changed in version 0.2.6: added length as attribute and min/max, and ge is the default
comparison for command sequence, –sort-attr to overlap

Changed in version 0.3.1: added –num-gt and –num-lt to values command, added cov command

Changed in version 0.3.4: moved to use click for argument parsing reworked the values, sequence
commands

Options

filter-gff

Main function

filter-gff [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

cov

Filter on a per coverage basis

filter-gff cov [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-f, --reference <reference>

	Reference FASTA file for the GFF [required]

	
-s, --strand-specific

	If the coverage must be calculated on each strand

	
-t, --sorted

	Assumes the GFF to be correctly sorted

	
-c, --min-coverage <min_coverage>

	Minimum coverage for the contig/strand

	
-r, --rename

	Emulates BLAST in reading the FASTA file (keeps only the header before the first space)

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

overlap

Use overlapping filter

filter-gff overlap [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-s, --size <size>

	Size of the overlap that triggers the filter [default: 100]

	
-t, --sorted

	If the GFF file is sorted (all of a sequence annotations are contiguos and sorted by strand) can use less memory, sort -s -k 1,1 -k 7,7 can be used

	
-c, --choose-func <choose_func>

	Function to choose between two overlapping annotations

	
-a, --sort-attr <sort_attr>

	Attribute to sort annotations before filtering (default bitscore) [default: bitscore]

	Options

	bitscore|identity|length

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

sequence

Filter on a per sequence basis

filter-gff sequence [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --sorted

	If the GFF file is sorted (all of a sequence annotations
are contiguos) can use less memory, sort -s -k 1,1 can be used

	
-a, --attribute <attribute>

	Attribute on which to apply the filter [default: bitscore]

	Options

	evalue|bitscore|identity|length

	
-f, --function <function>

	Function for filtering [default: mean]

	Options

	mean|median|quantile|std|max|min

	
-l, --value <value>

	Value for the function (used for std and quantile)

	
-c, --comparison <comparison>

	Type of comparison (e.g. ge -> greater than or equal to) [default: ge]

	Options

	gt|ge|lt|le

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

values

Filter based on values

filter-gff values [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
--str-eq <str_eq>

	filter by custom key:value, if the argument is ‘key:value’ the annotation is kept if it contains an attribute ‘key’ whose value is exactly ‘value’ as a string

	
--str-in <str_in>

	Same as ‘–str-eq’ but ‘value’ is contained in the attribute

	
--num-eq <num_eq>

	Same as ‘–str-eq’ but ‘value’ is a number which is equal or greater than

	
--num-ge <num_ge>

	Same as ‘–str-eq’ but ‘value’ is a number which is equal or greater than

	
--num-le <num_le>

	Same as ‘–num-ge’ but ‘value’ is a number which is equal or less than

	
--num-gt <num_gt>

	Same as ‘–str-eq’ but ‘value’ is a number which is greater than

	
--num-lt <num_lt>

	Same as ‘–num-ge’ but ‘value’ is a number which is less than

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

 add-gff-info - Add informations to GFF annotations

add-gff-info - Add informations to GFF annotations

Overview

Add more information to GFF annotations: gene mappings, coverage, taxonomy,
etc..

Uniprot Command

If the gene_id of an annotation is a Uniprot ID, the script queries Uniprot
for the requested information. At the moment the information that can be added
is the taxon_id, taxon_name, lineage and mapping to EC, KO, eggNOG IDs.

It’s also possible to add mappings to other databases using the -m option
with the correct identifier for the mapping, which can be found at this page [http://www.uniprot.org/faq/28]; for example if it’s we want to add the
mappings of uniprot IDs to BioCyc, in the abbreviation column of the
mappings we find that it’s identifier is REACTOME_ID, so we pass
-m REACTOME to the script (leaving _ID out). Mapped IDs are separated by
commas.

The taxonomy IDs are not overwritten if they are found in the annotations, the
-f is provided to force the overwriting of those values.

See also MGKit GFF Specifications for more informations about the GFF specifications
used.

Note

As the script needs to query Uniprot a lot, it is recommended to split
the GFF in several files, so an error in the connection doesn’t waste time.

However, a cache is kept to reduce the number of connections

Coverage Command

Adds coverage information from BAM alignment files to a GFF file, using the
function mgkit.align.add_coverage_info(), the user needs to supply for
each sample a BAM file, using the -a option, whose parameter is in the form
sample,samplealg.bam. More samples can be supplied adding more -a
arguments.

Hint

As an example, to add coverage for sample1, sample2 the command line
is:

add-gff-info coverage -a sample1,sample1.bam -a sample2,sample2.bam \
inputgff outputgff

A total coverage for the annotation is also calculated and stored in the
cov attribute, while each sample coverage is stored into sample_cov as per
MGKit GFF Specifications.

Adding Coverage from samtools depth

The cov_samtools allows the use of the output of samtools depth
command. The -aa options must be used to pass information about all base
pairs and sequences coverage in the BAM/SAM file. The command work similarly to
coverage, accepting compressed depth files as well. If only one depth
file is passed and no sample is passed, the attribute in the GFF will be cov,
otherwise the attribute will be sample1_cov, sample2_cov, etc.

To create samtools depth files, this command must be used:

$ samtools depth -aa bam_file

Uniprot Offline Mappings

Similar to the uniprot command, it uses the idmapping [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz]
file provided by Uniprot, which speeds up the process of adding mappings and
taxonomy IDs from Uniprot gene IDs. It’s not possible tough to add EC
mappings with this command, as those are not included in the file.

Kegg Information

The kegg command allows to add information to each annotation. Right now the
information that can be added is restricted to the pathway(s) (reference KO) a
KO is part of and both the KO and pathway(s) descriptions. This information is
stored in keys starting with ko_.

Expected Aminoacidic Changes

Some scripts, like snp_parser - SNPs analysis, require information about the expected
number of synonymous and non-synonymous changes of an annotation. This can be
done using mgkit.io.gff.Annotation.add_exp_syn_count() by the user of the
command exp_syn of this script. The attributes added to each annotation are
explained in the MGKit GFF Specifications

Adding Count Data

Count data on a per-sample basis can be added with the counts command. The
accepted inputs are from HTSeq-count and featureCounts. The ouput produced by
featureCounts, is the one from using its -f option must be used.

This script accept by default a tab separated file, with a uid in the first
column and the other columns are the counts for each sample, in the same order
as they are passed to the -s option. To use the featureCounts file format,
this script -e option must be used.

The sample names must be provided in the same order as the columns in the input
files. If the counts are FPKMS the -f option can be used.

Adding Taxonomy from a Table

There are cases where it may needed or preferred to add the taxonomy from a
gene_id already provided in the GFF file. For such cases the addtaxa
command can be used. It works in a similar way to the taxonomy command, only
it expect three different type of inputs:

	GI-Taxa table from NCBI (e.g. gi_taxid_nucl.dmp,)

	tab separated table

	dictionary

	HDF5

The first two are tab separated files, where on each line, the first column is
the gene_id that is found in the first column, while the second if the
taxon_id.

The third option is a serialised Python dict/hash table, whose keys are the
gene_id and the value is that gene corresponding taxon_id. The serialised
formats accepted are msgpack, json and pickle. The msgpack module must be
importable. The option to use json and msgpack allow to integrate this script
with other languages without resorting to a text file.

The last option is a HDF5 created using the to_hdf command in
taxon-utils - Taxonomy Utilities. This requires pandas installed and pytables and it
provides faster lookup of IDs in the table.

While the default is to look for the gene_id attribute in the GFF annotation,
another attribute can be specified, using the -gene-attr option.

Note

the dictionary content is loaded after the table files and its keys and
corresponding values takes precedence over the text files.

Warning

from September 2016 NCBI will retire the GI. In that case the same
kind of table can be built from the nucl_gb.accession2taxid.gz file
The format is different, but some information can be found in
mgkit.io.blast.parse_accession_taxa_table()

Adding information from Pfam

Adds the Pfam description for the annotation, by downloading the list from
Pfam.

The options allow to specify in which attribute the ID/ACCESSION is stored
(defaults to gene_id) and which one between ID/ACCESSION is the value of that
attribute (defaults to ID). if no description is found for the family, a
warning message is logged.

Changes

Changed in version 0.3.4: removed the taxonomy command, since a similar result can be obtained with
taxon-utils lca and add-gff-info addtaxa. Removed eggnog command and
added option to verbose the logging in cov_samtools (now is quiet), also
changed the interface

Changed in version 0.3.3: changed how addtaxa -a works, to allow the use of seq_id as key to
add the taxon_id

Changed in version 0.3.0: added cov_samtools command, –split option to exp_syn, -c option to
addtaxa. kegg now does not skip annotations when the attribute is not
found.

Changed in version 0.2.6: added skip-no-taxon option to addtaxa

Changed in version 0.2.5: if a dictionary is supplied to addtaxa, the GFF is not preloaded

Changed in version 0.2.3: added pfam command, renamed gitaxa to addtaxa and made it general

Changed in version 0.2.2: added eggnog, gitaxa and counts command

Changed in version 0.2.1.

	added -d to uniprot command

	added cache to uniprot command

	added kegg command (cached)

Changed in version 0.1.16: added exp_syn command

Changed in version 0.1.15: taxonomy command -b option changed

Changed in version 0.1.13.

	added –force-taxon-id option to the uniprot command

	added coverage command

	added taxonomy command

	added unipfile command

New in version 0.1.12.

Options

add-gff-info

Main function

add-gff-info [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

addtaxa

Adds taxonomy information from a GI-Taxa,
gene_id/taxon_id table or a dictionary serialised as a
pickle/msgpack/json file, or a table in a HDF5 file

add-gff-info addtaxa [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --gene-taxon-table <gene_taxon_table>

	GIDs taxonomy table (e.g. gi_taxid_nucl.dmp.gz) or a similar file where GENE/TAXON are tab separated and one per line

	
-a, --gene-attr <gene_attr>

	In which attribute the GENEID in the table is stored (defaults to gene_id)

	
-f, --hdf-table <hdf_table>

	HDF5 file and table name to use for taxon_id lookups. The format to pass is the file name, colon and the table file hf5:taxa-table. The index in the table is the accession_id, while the column taxon_id stores the taxon_id as int

	
-x, --taxonomy <taxonomy>

	Taxonomy file - If given, both taxon_name and lineage attributes will be set

	
-d, --dictionary <dictionary>

	A serialised dictionary, where the key is the GENEID and the value is TAXONID. It can be in json or msgpack format (can be a compressed file) Note: the dictionary values takes precedence over the table files

	
-e, --skip-no-taxon

	If used, annotations with no taxon_id won’t be outputted

	
-db, --taxon-db <taxon_db>

	DB used to add the taxonomic information

	
-c, --cache-table

	If used, annotations are not preloaded, but the taxa table is cached, instead

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

counts

Adds counts data to the GFF file

add-gff-info counts [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-s, --samples <samples>

	Sample names, in the same order as the count files [required]

	
-c, --count-files <count_files>

	Count file(s) [required]

	
-f, --fpkms

	If the counts are FPKMS

	
-e, --featureCounts

	If the counts files are from featureCounts

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

cov_samtools

Adds information from samtools_depth

add-gff-info cov_samtools [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-s, --samples <samples>

	Sample name, will add a sample_cov in the GFF file. If not passed, the attribute will be cov

	
-d, --depths <depths>

	samtools depth -aa file [required]

	
-n, --num-seqs <num_seqs>

	Number of sequences to update the log. If 0, no message is logged [default: 0]

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

coverage

Adds coverage information from BAM Alignment
files

add-gff-info coverage [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-a, --sample-alignment <sample_alignment>

	sample name and correspondent alignment file separated by comma [required]

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

exp_syn

Adds expected synonymous and non-synonymous
changes information

add-gff-info exp_syn [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-r, --reference <reference>

	reference sequence in fasta format [required]

	
-s, --split

	Split the sequence header of the reference at the first space, to emulate BLAST behaviour

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

kegg

Adds information and mapping from Kegg

add-gff-info kegg [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-c, --email <email>

	Contact email [required]

	
-d, --description

	Add Kegg description

	
-p, --pathways

	Add pathways ID involved

	
-m, --kegg-id <kegg_id>

	In which attribute the Kegg ID is stored (defaults to gene_id)

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

pfam

Adds information from Pfam

add-gff-info pfam [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-i, --id-attr <id_attr>

	In which attribute the Pfam ID/ACCESSION is stored (defaults to gene_id)

	
-a, --use-accession

	If used, the attribute value is the Pfam ACCESSION (e.g. PF06894), not ID (e.g. Phage_TAC_2)

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

unipfile

Adds expected synonymous and non-synonymous
changes information

add-gff-info unipfile [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-i, --mapping-file <mapping_file>

	Uniprot mapping file [required]

	
-f, --force-taxon-id

	Overwrite taxon_id if already present

	
-m, --mapping <mapping>

	Mappings to add [required]

	Options

	EMBL-CDS|KEGG|eggNOG|EMBL|STRING|UniPathway|BioCyc|NCBI_TaxID|KO|GI

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

uniprot

Adds information from GFF whose gene_id is
from Uniprot

add-gff-info uniprot [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-c, --email <email>

	Contact email [required]

	
--buffer <buffer>

	Number of annotations to keep in memory [default: 50]

	
-f, --force-taxon-id

	Overwrite taxon_id if already present

	
-t, --taxon-id

	Add taxonomic ids to annotations, if taxon_id is found, it won’t be Overwritten.

	
-l, --lineage

	Add taxonomic lineage to annotations

	
-e, --eggnog

	Add eggNOG mappings to annotations

	
-ec, --enzymes

	Add EC mappings to annotations

	
-ko, --kegg_orthologs

	Add KO mappings to annotations

	
-d, --protein-names

	Add Uniprot description

	
-m, --mapping <mapping>

	Add any DB mappings to annotations

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

 get-gff-info - Extract informations to GFF annotations

get-gff-info - Extract informations to GFF annotations

Overview

Extract information from GFF files

sequence command

Used to extract the nucleotidic sequences from GFF annotations. It requires the
fasta file containing the sequences referenced in the GFF seq_id attribute
(first column of the raw GFF).

The sequnces extract have as identifier the uid stored in the GFF file and by
default the sequnece is not reverse complemented if the annotation is on the
- strand, but this can be changed by using the -r option.

The sequences are wrapped at 60 characters, as per FASTA specs, but this
behavior can be disabled by specifing the -w option.

Warning

The reference file is loaded in memory

dbm command

Creates a dbm DB using the semidbm package. The database can then be loaded
using mgkit.db.dbm.GFFDB

mongodb command

Outputs annotations in a format supported by MongoDB. More information about it
can be found in mgkit.db.mongo

gtf command

Outputs annotations in the GTF format

split command

Splits a GFF file into smaller chunks, ensuring that all of a sequence
annotations are in the same file.

cov command

Calculate annotation coverage for each contig in a GFF file. The command can be
run as strand specific (not by default) and requires the reference file to
which the annotation refer to. The output file is a tab separated one, with the
first column being the sequence name, the second is the strand (+, -, or NA if
not strand specific) and the third is the percentage of the sequence covered by
annotations.

Warning

The GFF file is assumed to be sorted, by sequence or sequence-strand if
wanted. The GFF file can be sorted using sort -s -k 1,1 -k 7,7 for strand
specific, or sort -s -k 1,1 if not strand specific.

Changes

Changed in version 0.3.4: using click instead of argparse, renamed split command –json to
–json-out

Changed in version 0.3.1: added cov command

Changed in version 0.3.0: added –split option to sequence command

Changed in version 0.2.6: added split command, –indent option to mongodb

Changed in version 0.2.3: added –gene-id option to gtf command

New in version 0.2.2: added gtf command

New in version 0.2.1: dbm and mongodb commands

New in version 0.1.15.

Options

get-gff-info

Main function

get-gff-info [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

cov

Report on how much a sequence length is covered
by annotations in [gff-file]

get-gff-info cov [OPTIONS] [GFF_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-f, --reference <reference>

	Reference FASTA file for the GFF [required]

	
-j, --json-out

	The output will be a JSON dictionary

	
-s, --strand-specific

	If the coverage must be calculated on each strand

	
-r, --rename

	Emulate BLAST output (use only the header part before the first space)

	
--progress

	Shows Progress Bar

Arguments

	
GFF_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

dbm

Creates a dbm database with annotations from file
[gff-file] into db [output-dir]

get-gff-info dbm [OPTIONS] [GFF_FILE]

Options

	
-v, --verbose

	

	
-d, --output-dir <output_dir>

	Directory for the database [default: gff-dbm]

Arguments

	
GFF_FILE

	Optional argument

gtf

Extract annotations from a GFF file [gff-file] to
a GTF file [gtf-file]

get-gff-info gtf [OPTIONS] [GFF_FILE] [GTF_FILE]

Options

	
-v, --verbose

	

	
-g, --gene-id <gene_id>

	GFF attribute to use for the GTF gene_id attribute [default: gene_id]

Arguments

	
GFF_FILE

	Optional argument

	
GTF_FILE

	Optional argument

mongodb

Extract annotations from a GFF [gff-file] file
and makes output for MongoDB [output-file]

get-gff-info mongodb [OPTIONS] [GFF_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --taxonomy <taxonomy>

	Taxonomy used to populate the lineage

	
-c, --no-cache

	No cache for the lineage function

	
-i, --indent <indent>

	If used, the json will be written in a human readble form

	
--progress

	Shows Progress Bar

Arguments

	
GFF_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

sequence

Extract the nucleotidic sequences of
annotations from [gff-file] to [fasta-file]

get-gff-info sequence [OPTIONS] [GFF_FILE] [FASTA_FILE]

Options

	
-v, --verbose

	

	
-r, --reverse

	Reverse complement sequences on the - strand

	
-w, --no-wrap

	Write the sequences on one line

	
-s, --split

	Split the sequence header of the reference at the first space, to emulate BLAST behaviour

	
-f, --reference <reference>

	Fasta file containing the reference sequences of the GFF file

	
--progress

	Shows Progress Bar

Arguments

	
GFF_FILE

	Optional argument

	
FASTA_FILE

	Optional argument

split

Split annotations from a GFF file [gff-file] to
several files starting with [prefix]

get-gff-info split [OPTIONS] [GFF_FILE]

Options

	
-v, --verbose

	

	
-p, --prefix <prefix>

	Prefix for the file name in output [default: split]

	
-n, --number <number>

	Number of chunks into which split the GFF file [default: 10]

	
-z, --gzip

	gzip output files

Arguments

	
GFF_FILE

	Optional argument

 hmmer2gff - Convert HMMER output to GFF

hmmer2gff - Convert HMMER output to GFF

Overview

Script to convert HMMER results files (domain table) to a GFF file, the name of
the profiles are expected to be now in the form
GENEID_TAXONID_TAXON-NAME(-nr) by default, but any other profile name is
accepted.

The profiles tested are those made from Kegg Orthologs, from the
download_profiles script. If the –no-custom-profiles options is used,
the script can be used with any profile name. The profile name will be used
for gene_id, taxon_id and taxon_name in the GFF file.

It is possible to use seuqnces not translated using mgkit, no information on
the frame is assumed, so this script can be used against a protein DB. For
example Uniprot can be searched for profiles, in which case the –no-frame
options must be used.

Note

for GENEID, old documentation points to KOID, it is the same

Warning

The compatibility with old data has been removed, meaning that old
experiments must use the scripts from those versions. It is possible to use
multiple environments, with virtualenv for this purpose. An examples is
given in Installation.

Changes

Changed in version 0.1.15: adapted to new GFF module and specs

Changed in version 0.2.1: added options to customise output and filters and old restrictions

Changed in version 0.3.1: added –no-frame option for non mgkit-translated proteins, sequence
headers are handled the same way as HMMER (truncated at the first space)

Options

Convert HMMER data to GFF file

usage: hmmer2gff [-h] [-o [OUTPUT_FILE]] [-t DISCARD] [-d] [-c] [-db DATABASE]
 [-f FEATURE_TYPE] [-n] [-v | --quiet] [--cite] [--manual]
 [--version]
 aa_file [hmmer_file]

Named Arguments

	-v, --verbose

	more verbose - includes debug messages

Default: 20

	--quiet

	less verbose - only error and critical messages

	--cite

	Show citation for the framework

	--manual

	Show the script manual

	--version

	show program’s version number and exit

File options

	aa_file

	Fasta file containing contigs translated to aa (used by HMMER)

	hmmer_file

	Default: -

	-o, --output-file

	Default: <open file ‘<stdout>’, mode ‘w’ at 0x7eff0d307150>

Filters

	-t, --discard

	Evalue over which an hit will be discarded

Default: 0.05

	-d, --disable-evalue

	Disable Evalue filter

Default: False

GFF

	-c, --no-custom-profiles

	Profiles names are not in the custom format

Default: True

	-db, --database

	Database from which the profiles are generated ” +” (e.g. PFAM)

Default: “CUSTOM”

	-f, --feature-type

	Type of feature (e.g. gene)

Default: “gene”

	-n, --no-frame

	Set if the sequences were not translated with translate_seq

Default: False

 snp_parser - SNPs analysis

snp_parser - SNPs analysis

Overview

 blockdiag

 Alignments

 Assembly

 VCF files

 VCF Merge

 SNPs Calling

 Add Information

 snp_parser

 GFF

The workflow starts with a number of alignments passed to the SNP calling
software, which produces one VCF file per alignment/sample. These VCF files are
used by SNPDat [http://code.google.com/p/snpdat/] along a GTF file and the
reference genome to integrate the information in VCF files with
synonymous/non-synonymous information.

All VCF files are merged into a VCF that includes information about all the SNPs called among all samples. This merged VCF is passed, along with the results from SNPDat and the GFF file to snp_parser.py which integrates information from all data sources and output files in a format that can be later used by the rest of the pipeline. 1

Note

The GFF file passed to the parser must have per sample coverage information.

	1

	This step is done separately because it’s both time consuming and can
helps to paralellise later steps

Script Reference

This script parses results of SNPs analysis from any tool for SNP calling 2
and integrates them into a format that can be later used for other scripts in
the pipeline.

It integrates coverage and expected number of syn/nonsyn change and taxonomy
from a GFF file, SNP data from a VCF file.

Note

The script accept gzipped VCF files

	2

	GATK pipeline was tested, but it is possible to use samtools and
bcftools

Changes

Changed in version 0.2.1: added -s option for VCF files generated using bcftools

Changed in version 0.1.16: reworkked internals and removed SNPDat, syn/nonsyn evaluation is internal

Changed in version 0.1.13: reworked the internals and the classes used, including options -m and -s

Options

SNPs analysis, requires a vcf file and SNPDat results

usage: snp_parser [-h] [-o OUTPUT_FILE] [-q MIN_QUAL] [-f MIN_FREQ]
 [-r MIN_READS] -g GFF_FILE -p VCF_FILE -a REFERENCE -m
 SAMPLES_ID [-c COV_SUFF] [-s] [-v | --quiet] [--cite]
 [--manual] [--version]

Named Arguments

	-o, --output-file

	Ouput file

Default: snp_data.pickle

	-q, --min-qual

	Minimum SNP quality (Phred score)

Default: 30

	-f, --min-freq

	Minimum allele frequency

Default: 0.01

	-r, --min-reads

	Minimum number of reads to accept the SNP

Default: 4

	-g, --gff-file

	GFF file with annotations

	-p, --vcf-file

	Merged VCF file

	-a, --reference

	Fasta file with the GFF Reference

	-m, --samples-id

	the ids of the samples used in the analysis

	-c, --cov-suff

	Per sample coverage suffix in the GFF

Default: “_cov”

	-s, --bcftools-vcf

	bcftools call was used to produce the VCF file

Default: False

	-v, --verbose

	more verbose - includes debug messages

Default: 20

	--quiet

	less verbose - only error and critical messages

	--cite

	Show citation for the framework

	--manual

	Show the script manual

	--version

	show program’s version number and exit

 Download Taxonomy

Download Taxonomy

A bash script called download-taxonomy.sh is installed along with MGKit. This script download the relevant files from NCBI using wget, and save the taxonomy file that can be used with MGKit to a file called taxonomy.pickle.

Since the script uses wget to download the file taxdump.tar.gz [ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz], if wget can’t be found, the scripts fails. To avoid this situation, the file can be downloaded in another way, and the script detects if the file exists, avoiding the call of wget.

The script can also save the file with another file name, if this is passed when the script is invoked. if the file extension contains .msgpack, the msgpack module is used to write the taxonomy, otherwise pickle is used.

The advantage of msgpack is faster read/write and better compression ratio; it needs an additional module (msgpack [https://github.com/msgpack/msgpack-python]) that is not installed by default.

Download Accession/TaxonID

There are 2 separate scripts to download these tables:

	download-uniprot-taxa.sh will download a table for Uniprot databases

	download-ncbi-taxa.sh for BLAST DBs from NCBI, by default for nt, but nr can be downloaded with download-ncbi-taxa.sh prot

In particular, nr refers to the protein database in NCBI, while nt refers to the nucleotidic one. Both Uniprot Swissprot and TrEMBL are downloaded by the first scripts.

 taxon-utils - Taxonomy Utilities

taxon-utils - Taxonomy Utilities

Overview

The script contains commands used to access functionality related to
taxonomy, without the need to write ad-hoc code for functionality that
can be part of a workflow. One example is access to the the last common
ancestor function contained in the mgkit.taxon.

Last Common Ancestor (lca and lca_line)

These commands expose the functionality of
last_common_ancestor_multiple(), making it accessible via the command
line. They differ in the input file format and the choice of output files.

the lca command can be used to define the last common ancestor of contigs
from the annotation in a GFF file. The command uses the taxon_ids from all
annotations belonging to a contig/sequence, if they have a bitscore higher
or equal to the one passed (50 by default). The default output of the command
is a tab separated file where the first column is the contig/sequence name,
the taxon_id of the last common ancestor, its scientific/common name and its
lineage.

For example:

contig_21 172788 uncultured phototrophic eukaryote cellular organisms,environmental samples

If the -r is used, by passing the fasta file containing the nucleotide
sequences the output file is a GFF where for each an annotation for the full
contig length contains the same information of the tab separated file format.

The lca_line command accept as input a file where each line consist of a
list of taxon_ids. The separator for the list can be changed and it defaults to
TAB. The last common ancestor for all taxa on a line is searched. The ouput of
this command is the same as the tab separated file of the lca command, with
the difference that instead of the first column, which in this command becames
a list of all taxon_ids that were used to find the last common ancestor for
that line. The list of taxon_ids is separated by semicolon “;”.

Note

Both also accept the -n option, to report the config/line and the
taxon_ids that had no common ancestors. These are treated as errors and do
not appear in the output file.

Krona Output

New in version 0.3.0.

The lca command supports the writing of a file compatible with Krona. The
output file can be used with the ktImportText/ImportText.pl script included
with KronaTools [https://github.com/marbl/Krona/wiki]. Specifically, the
output from taxon_utils will be a file with all the lineages found (tab
separated), that can be used with:

$ ktImportText -q taxon_utils_ouput

Note the use of -q to make the script count the lineages. Sequences with no
LCA found will be marked as No LCA in the graph, the -n is not required.

Note

Please note that the output won’t include any sequence that didn’t have a
hit with the software used. If that’s important, the -kt option can be
used to add a number of Unknown lines at the end, to read the total
supplied.

Filter by Taxon

The filter command of this script allows to filter a GFF file using the
taxon_id attribute to include only some annotations, or exclude some. The
filter is based on the mgkit.taxon.is_ancestor function, and the
mgkit.filter.taxon.filter_taxon_by_id_list. It can also filter a table (tab
separated values) when the first element is an ID and the second is a taxon_id.
An example of a table of this sort is the output of the download-ncbi-taxa.sh
and download-uniprot-taxa.sh, where each accession of a database is associated
to a taxon_id.

Multiple taxon_id can be passed, either for inclusion or exclusion. If both
exclusion and inclusion is used, the first check is on the inclusion and then on
the exclusion. In alternative to passing taxon_id, taxon_names can be passed,
with values such as ‘cellular organisms’ that needs to be quoted. Example:

$ taxon-utils filter -i 2 -in archaea -en prevotella -t taxonomy.pickle in.gff out.gff

Which will keep only line that are from Bacteria (taxon_id=2) and exclude those
from the genus Prevotella. It will be also include Archaea.

Multiple inclusion and exclusion flags can be put:

$ taxon-utils filter -i 2 -i 2172 -t taxonomy in.gff out.gff

In particular, the inclusion flag is tested first and then the exclusion is
tested. So a line like this one:

printf "TEST\t838\nTEST\t1485" | taxon-utils filter -p -t taxonomy.pickle -i 2 -i 1485 -e 838

Will produce TEST 1485, because both Prevotella (838) and Clostridium (1485)
are Bacteria (2) OR Prevotella, but Prevotella must be excluded according to
the exclusion option. This line also illustrate that a tab-separated file, where
the second column contains taxon IDs, can be filtered. In particular it can be
applied to files produced by download-ncbi-taxa.sh or
download-uniprot-taxa.sh (see Download Taxonomy).

Warning

Annotations with no taxon_id are not included in the output of both filters

Convert Taxa Tables to HDF5

This command is used to convert the taxa tables download from Uniprot and NCBI,
using the scripts mentioned in download-data,
download-uniprot-taxa.sh and download-ncbi-taxa into a HDF5 file that can
be used with the addtaxa command in add-gff-info - Add informations to GFF annotations.

The advantage is a faster lookup of the IDs. The other is a smaller memory
footprint when a great number of annotations are kept in memory.

Changes

Changed in version 0.3.4: changed interface and behaviour for filter, also now can filter tables;
lca has changed the interface and allows the output of a 2 column table

Changed in version 0.3.1: added to_hdf command

Changed in version 0.3.1: added -j option to lca, which outputs a JSON file with the LCA results

Changed in version 0.3.0: added -k and -kt options for Krona output, lineage now includes the LCA
also added -a option to select between lineages with only ranked taxa.
Now it defaults to all components.

Changed in version 0.2.6: added feat-type option to lca command, added phylum output to nolca

New in version 0.2.5.

Options

taxon-utils

Main function

taxon-utils [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

filter

Filter a GFF file or a table based on taxonomy

taxon-utils filter [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-p, --table

	

	
-t, --taxonomy <taxonomy>

	Taxonomy file [required]

	
-i, --include-taxon-id <include_taxon_id>

	Include only taxon_ids

	
-in, --include-taxon-name <include_taxon_name>

	Include only taxon_names

	
-e, --exclude-taxon-id <exclude_taxon_id>

	Exclude taxon_ids

	
-en, --exclude-taxon-name <exclude_taxon_name>

	Exclude taxon_names

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

lca

Finds the last common ancestor for each sequence
in a GFF file

taxon-utils lca [OPTIONS] [GFF_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --taxonomy <taxonomy>

	Taxonomy file [required]

	
-n, --no-lca <no_lca>

	File to which write records with no LCA

	
-a, --only-ranked

	If set, only taxa that have a rank will be used in the lineageself. This is not advised for lineages such as Viruses, where the top levels have no rank

	
-b, --bitscore <bitscore>

	Minimum bitscore accepted [default: 0]

	
-m, --rename

	Emulates BLAST behaviour for headers (keep left of first space)

	
-s, --sorted

	If the GFF file is sorted (all of a sequence annotations are contiguos) can use less memory, sort -s -k 1,1 can be used

	
-ft, --feat-type <feat_type>

	Feature type used if the output is a GFF (default is LCA) [default: LCA]

	
-r, --reference <reference>

	Reference file for the GFF, if supplied a GFF file is the output

	
-p, --simple-table

	Uses a 2 column table format (seq_id taxon_id) TAB separated

	
-kt, --krona-total <krona_total>

	Total number of raw sequences (used to output correct percentages in Krona

	
-f, --out-format <out_format>

	Format of output file [default: tab]

	Options

	krona|json|tab|gff

	
--progress

	Shows Progress Bar

Arguments

	
GFF_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

lca_line

Finds the last common ancestor for all IDs in
a text file line

taxon-utils lca_line [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --taxonomy <taxonomy>

	Taxonomy file [required]

	
-n, --no-lca <no_lca>

	File to which write records with no LCA

	
-a, --only-ranked

	If set, only taxa that have a rank will be used in the lineageself. This is not advised for lineages such as Viruses, where the top levels have no rank

	
-s, --separator <separator>

	separator for taxon_ids (defaults to TAB)

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

to_hdf

Convert a taxa table to HDF5, with the input as
tabular format, defaults to stdin. Output file, defaults to
(taxa-table.hf5)

taxon-utils to_hdf [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-n, --table-name <table_name>

	Name of the table/storage to use [default: taxa]

	
-w, --overwrite

	Overwrite the file, instead of appending to it

	
-s, --index-size <index_size>

	Maximum number of characters for the gene_id [default: 12]

	
-c, --chunk-size <chunk_size>

	Chunk size to use when reading the input file [default: 5000000]

	
--progress

	Shows Progress Bar

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

 fasta-utils - Fasta Utilities

fasta-utils - Fasta Utilities

Overview

New in version 0.3.0.

Scripts that includes some functionality to help use FASTA files with the
framework

split command

Used to split a fasta file into smaller fragments

translate command

Used to translate nucleotide sequences into amino acids.

uid command

Used to change a FASTA file headers to a unique ID. A table (tab separated)
with the changes made can be kept, using the –table option.

Changes

New in version 0.3.0.

Changed in version 0.3.1: added translate and uid command

Changed in version 0.3.4: ported to click

Options

fasta-utils

Main function

fasta-utils [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

split

Splits a FASTA file [fasta-file] in a number of
fragments

fasta-utils split [OPTIONS] [FASTA_FILE]

Options

	
-v, --verbose

	

	
-p, --prefix <prefix>

	Prefix for the file name in output [default: split]

	
-n, --number <number>

	Number of chunks into which split the FASTA file [default: 10]

	
-z, --gzip

	gzip output files

Arguments

	
FASTA_FILE

	Optional argument

translate

Translate FASTA file [fasta-file] in all 6
frames to [output-file]

fasta-utils translate [OPTIONS] [FASTA_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --trans-table <trans_table>

	translation table [default: universal]

	Options

	bac_plt|drs_mit|inv_mit|prt_mit|universal|vt_mit|yst_alt|yst_mit

	
--progress

	Shows Progress Bar

Arguments

	
FASTA_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

uid

Changes each header of a FASTA file [file-file] to
a uid (unique ID)

fasta-utils uid [OPTIONS] [FASTA_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-t, --table <table>

	Filename of a table to record the changes (by default discards it)

Arguments

	
FASTA_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

 fastq-utils - Fastq Utilities

fastq-utils - Fastq Utilities

Overview

Commands

	Interleave/deinterleave paired-end fastq files.

	Converts to FASTA

	sort 2 files to sync the headers

Changes

Changed in version 0.3.4: moved to use click, internal fastq parsing, removed rand command

Changed in version 0.3.1: added stdin/stdout defaults for some commands

Changed in version 0.3.0: added convert command to FASTA

Options

fastq-utils

Main function

fastq-utils [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

convert

Convert FastQ file [fastq-file] to FASTA file
[fasta-file]

fastq-utils convert [OPTIONS] [FASTQ_FILE] [FASTA_FILE]

Options

	
-v, --verbose

	

Arguments

	
FASTQ_FILE

	Optional argument

	
FASTA_FILE

	Optional argument

di

Deinterleave sequences from [fastq-file], into
[mate1-file] and [mate2-file]

fastq-utils di [OPTIONS] [FASTQ_FILE] MATE1_FILE MATE2_FILE

Options

	
-v, --verbose

	

	
-s, --strip

	Strip additional info

Arguments

	
FASTQ_FILE

	Optional argument

	
MATE1_FILE

	Required argument

	
MATE2_FILE

	Required argument

il

Interleave sequences from [mate1-file] and
[mate2-file] into [fastq-file]

fastq-utils il [OPTIONS] MATE1_FILE MATE2_FILE [FASTQ_FILE]

Options

	
-v, --verbose

	

Arguments

	
MATE1_FILE

	Required argument

	
MATE2_FILE

	Required argument

	
FASTQ_FILE

	Optional argument

sort

Sort paired-end sequences from [mate1-input] and
[mate2-input] into files [mate1-output] and [mate2-output]

fastq-utils sort [OPTIONS] MATE1_INPUT MATE2_INPUT MATE1_OUTPUT MATE2_OUTPUT

Options

	
-v, --verbose

	

Arguments

	
MATE1_INPUT

	Required argument

	
MATE2_INPUT

	Required argument

	
MATE1_OUTPUT

	Required argument

	
MATE2_OUTPUT

	Required argument

 json2gff - Convert JSON to GFF

json2gff - Convert JSON to GFF

Overview

Changed in version 0.3.4: using click instead of argparse

New in version 0.2.6.

This script converts annotations in JSON format that were created using MGKit
back into GFF annotations.

mongodb command

Annotations converted into MongoDB records with get-gff-info mongodb can be
converted back into a GFF file using this command. It can be useful to get a
GFF file as output from a query to a MongoDB instance on the command line.

For example:

mongoexport -d db -c test | json2gff mongodb

will convert all the annotations in the database db, collection test to
the standard out.

Options

json2gff

Main function

json2gff [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

mongodb

Convert annotations from a MongoDB instance to
GFF

json2gff mongodb [OPTIONS] [INPUT_FILE] [GFF_FILE]

Options

	
-v, --verbose

	

Arguments

	
INPUT_FILE

	Optional argument

	
GFF_FILE

	Optional argument

 sampling-utils - Resampling Utilities

sampling-utils - Resampling Utilities

Overview

New in version 0.3.1.

Resampling Utilities

sample command

This command samples from a Fasta or FastQ file, based on a probability defined
by the user (0.001 or 1 / 1000 by default, -r parameter), for a maximum number
of sequences (100,000 by default, -x parameter). By default 1 sample is
extracted, but as many as desired can be taken, by using the -n parameter.

The sequence file in input can be either be passed to the standard input or as
last parameter on the command line. By defult a Fasta is expected, unless the
-q parameter is passed.

The -p parameter specifies the prefix to be used, and if the output files can
be gzipped using the -z parameter.

sample_stream command

It works in the same way as sample, however the file is sampled only once and
the output is the stdout by default. This can be convenient if streams are a
preferred way to sample the file.

sync command

Used to keep in sync forward and reverse read files in paired-end FASTQ.
The scenario is that the sample command was used to resample a FASTQ file,
usually the forward, but we need the reverse as well. In this case, the resampled
file, called master is passed to the -m option and the input file is
the file that is to be synced (reverse). The input file is scanned until the same header is
found in the master file and when that happens, the sequence is written. The
next sequence is then read from the master file and the process is repeated until all
sequence in the master file are found in the input file. This implies having
the 2 files sorted in the same way, which is what the sample command does.

Note

the old casava format is not supported by this command at the moment, as
it’s unusual to find it in SRA or other repositories as well.

rand_seq command

Generate random FastA/Q sequences, allowing the specification of GC content and
number of sequences being coding or random. If the output format chosen is
FastQ, qualities are generated using a decreasing model with added noise. A
constant model can be specified instead with a switch. Parameters such GC,
length and the type of model can be infered by passing a FastA/Q file, with
the quality model fit using a LOWESS (using mgkit.utils.sequence.extrapolate_model()).
The noise in that case is model as the a normal distribution fitted from the
qualities along the sequence deviating from the fitted LOWSS and scaled back by
half to avoid too drastic changes in the qualities. Also the qualities are
clipped at 40 to avoid compatibility problems with FastQ readers. If inferred,
the model can be saved (as a pickle file) and loaded back for analysis

Changes

Changed in version 0.3.4: using click instead of argparse. Now *rand_seq can save and reload models

Changed in version 0.3.3: added sync, sample_stream and rand_seq commnads

Options

sampling-utils

Main function

sampling-utils [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

	
--cite

	

rand_seq

Generates random FastA/Q sequences

sampling-utils rand_seq [OPTIONS] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-n, --num-seqs <num_seqs>

	Number of sequences to generate [default: 1000]

	
-gc, --gc-content <gc_content>

	GC content (defaults to .5 out of 1) [default: 0.5]

	
-i, --infer-params <infer_params>

	Infer parameters GC content and Quality model from file

	
-r, --coding-prop <coding_prop>

	Proportion of coding sequences [default: 0.0]

	
-l, --length <length>

	Sequence length [default: 150]

	
-d, --const-model

	Use a model with constant qualities + noise

	
-x, --dist-loc <dist_loc>

	Use as the starting point quality [default: 30.0]

	
-q, --fastq

	The output file is a FastQ file

	
-m, --save-model <save_model>

	Save inferred qualities model to a pickle file

	
-a, --read-model <read_model>

	Load qualities model from a pickle file

	
--progress

	Shows Progress Bar

Arguments

	
OUTPUT_FILE

	Optional argument

sample

Sample a FastA/Q multiple times

sampling-utils sample [OPTIONS] [INPUT_FILE]

Options

	
-v, --verbose

	

	
-p, --prefix <prefix>

	Prefix for the file name(s) in output [default: sample]

	
-n, --number <number>

	Number of samples to take [default: 1]

	
-r, --prob <prob>

	Probability of picking a sequence [default: 0.001]

	
-x, --max-seq <max_seq>

	Maximum number of sequences [default: 100000]

	
-q, --fastq

	The input file is a fastq file

	
-z, --gzip

	gzip output files

Arguments

	
INPUT_FILE

	Optional argument

sample_stream

Samples a FastA/Q one time, alternative
to sample if multiple sampling is not needed

sampling-utils sample_stream [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-r, --prob <prob>

	Probability of picking a sequence

	
-x, --max-seq <max_seq>

	Maximum number of sequences

	
-q, --fastq

	The input file is a fastq file

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

sync

Syncs a FastQ file generated with sample with
the original pair of files.

sampling-utils sync [OPTIONS] [INPUT_FILE] [OUTPUT_FILE]

Options

	
-v, --verbose

	

	
-m, --master-file <master_file>

	Resampled FastQ file that is out of sync with the original pair [required]

Arguments

	
INPUT_FILE

	Optional argument

	
OUTPUT_FILE

	Optional argument

 Example Notebooks

Example Notebooks

Example notebooks are included about using the library

	Abundance Plots
	Triangle Plot
	Grid

	Plot

	Abundance Plot with 2 Samples
	Grid

	Boxplots
	Simple boxplot

	Change order of boxplots

	Change labels

	Change font parameters

	Empty boxplots

	Vertical boxplot

	Change boxplot colors

	Change data colors and the median color

	Adding data points

	Adding Significance annotations
	Changed direction, different palette and marker

	Heatmaps
	Random matrix and color map init

	Basic plot

	Add numbers to the heatmap
	Default

	Change format of numbers

	Using Boundaries for the colors

	Normalising the colors
	Grouping labels

	Reversing the order of the rows

	A dendrogram from clustering the data
	Clustering rows

	Clustering colums (You need the transposed matrix)

	A simple clustered heatmap, look at the code for customisation

	Misc. Plots Tips
	Trim Figure

	Examples of the mgkit.db package
	Imports

	Download Example GFF

	GFF Annotations
	Taxonomy and Annotations

	Issues

	semidbm

	Using MongoDB
	Using Taxonomy

 Abundance Plots

Abundance Plots

[1]:

import numpy
import mgkit.plots
import mgkit.plots.abund
import seaborn as sns
import pandas as pd

[2]:

n = 10
p = 0.50
size = 20

[3]:

data = pd.DataFrame({
 'S1': numpy.random.negative_binomial(n, p, size),
 'S2': numpy.random.negative_binomial(n, p + 0.1, size),
 'S3': numpy.random.negative_binomial(n, p - 0.1, size),
})

Triangle Plot

Grid

[4]:

First we need to draw the triangle grid
aspect should be equal to ensure that the triangle sides have the same length
fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
the labels passed are first drawn from bottom-left, then bottom-right and finally top
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)

[image: ../../_images/examples_plots_abund_6_0.png]

[5]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
the style can be customised by passing the appropriate matplotlib line markers with the styles parameter
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns, styles=['--', '-.', '-'])

[image: ../../_images/examples_plots_abund_7_0.png]

[6]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
The axis can be set to solid lines and the internals to dotted by passing None as styles value
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns, styles=None)

[image: ../../_images/examples_plots_abund_8_0.png]

Plot

[7]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
this function accept matrices with either two or three columns
mgkit.plots.abund.draw_circles(ax, data)

[7]:

<matplotlib.collections.PathCollection at 0x7f9d082be8d0>

[image: ../../_images/examples_plots_abund_10_1.png]

[8]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
col_func is any function that accept a value (an element of data.index) and returns a valid matplotlib color for it
col_func = lambda x: sns.color_palette('hls', len(data))[x]
mgkit.plots.abund.draw_circles(ax, data, col_func=col_func)

[8]:

<matplotlib.collections.PathCollection at 0x7f9cf6e87290>

[image: ../../_images/examples_plots_abund_11_1.png]

[9]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
csize is the base size for the circle
mgkit.plots.abund.draw_circles(ax, data, col_func=col_func, csize=500)

[9]:

<matplotlib.collections.PathCollection at 0x7f9cf3581390>

[image: ../../_images/examples_plots_abund_12_1.png]

[10]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
the sizescale parameter allows to specify a size factor for each row that is multiplied to the csize parameter
sizescale = pd.Series(numpy.random.random(20) * 3)
mgkit.plots.abund.draw_circles(
 ax,
 data,
 col_func=lambda x: sns.color_palette('hls', len(data))[x],
 csize=500,
 sizescale=sizescale
)

[10]:

<matplotlib.collections.PathCollection at 0x7f9d084bed50>

[image: ../../_images/examples_plots_abund_13_1.png]

[11]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
the order parameter can be used to only plot only a subset of the point
mgkit.plots.abund.draw_circles(
 ax,
 data,
 col_func=col_func,
 csize=500,
 sizescale=sizescale,
 order=data.index[:10]
)

[11]:

<matplotlib.collections.PathCollection at 0x7f9d0ce98110>

[image: ../../_images/examples_plots_abund_14_1.png]

[12]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
or also to make sure bigger circles are drawn first, below smaller ones
mgkit.plots.abund.draw_circles(
 ax,
 data,
 col_func=col_func,
 csize=500,
 sizescale=sizescale,
 order=sizescale.sort_values(ascending=False, inplace=False).index
)

[12]:

<matplotlib.collections.PathCollection at 0x7f9d0842f710>

[image: ../../_images/examples_plots_abund_15_1.png]

[13]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
trasparency of circles can be adjusted with the alpha parameter (between 0 and 1)
mgkit.plots.abund.draw_circles(
 ax,
 data,
 col_func=col_func,
 csize=500,
 sizescale=sizescale,
 order=sizescale.sort_values(ascending=False, inplace=False).index,
 alpha=1
)

[13]:

<matplotlib.collections.PathCollection at 0x7f9d0aa5abd0>

[image: ../../_images/examples_plots_abund_16_1.png]

[14]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10), aspect='equal')
mgkit.plots.abund.draw_triangle_grid(ax, labels=data.columns)
if lines are required around the circles, linewidths and edgecolor can be used to customise them
mgkit.plots.abund.draw_circles(
 ax,
 data,
 col_func=col_func,
 csize=500,
 sizescale=sizescale,
 order=sizescale.sort_values(ascending=False, inplace=False).index,
 linewidths=1,
 edgecolor='k'
)

[14]:

<matplotlib.collections.PathCollection at 0x7f9d0a9600d0>

[image: ../../_images/examples_plots_abund_17_1.png]

Abundance Plot with 2 Samples

Grid

[15]:

First we need to draw the 1D grid
aspect should be set to make sure the correct aspect ratio is drawn
fig, ax = mgkit.plots.get_single_figure(figsize=(10, 3), aspect=0.1)
the labels passed are drawn from left to right
mgkit.plots.abund.draw_1d_grid(ax, labels=data.columns[:2])

[image: ../../_images/examples_plots_abund_20_0.png]

[16]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 3), aspect=0.1)
mgkit.plots.abund.draw_1d_grid(ax, labels=data.columns[:2])
mgkit.plots.abund.draw_circles(
 ax,
 data.iloc[:, [0,1]],
 col_func=col_func,
 csize=500,
 sizescale=sizescale,
 order=sizescale.sort_values(ascending=False, inplace=False).index,
 linewidths=1,
 edgecolor='k'
)

[16]:

<matplotlib.collections.PathCollection at 0x7f9d0a837a50>

[image: ../../_images/examples_plots_abund_21_1.png]

 Boxplots

Boxplots

[1]:

import mgkit.plots.boxplot
import numpy
import pandas
import seaborn as sns

[2]:

nrows = 9
ncols = 30
data = pandas.DataFrame({
 x: numpy.random.negative_binomial(1000, 0.05, size=nrows)
 for x in xrange(ncols)
})

Simple boxplot

[3]:

fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(data, data.index, ax)

[image: ../../_images/examples_plots_boxplot_4_0.png]

Change order of boxplots

[4]:

fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(data, data.index[::-1], ax)

[image: ../../_images/examples_plots_boxplot_6_0.png]

Change labels

[5]:

fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(data, data.index, ax, label_map={x: 'label {}'.format(x) for x in data.index})

[image: ../../_images/examples_plots_boxplot_8_0.png]

Change font parameters

[6]:

fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45)
)

[image: ../../_images/examples_plots_boxplot_10_0.png]

Empty boxplots

[7]:

fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45),
 fill_box=False
)

[image: ../../_images/examples_plots_boxplot_12_0.png]

Vertical boxplot

[8]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation='horizontal'),
 fill_box=True,
 box_vert=False
)

[image: ../../_images/examples_plots_boxplot_14_0.png]

Change boxplot colors

[9]:

boxplot_colors = {
 key: col
 for key, col in zip(mgkit.plots.boxplot.DEFAULT_BOXPLOT_COLOURS, sns.color_palette('Dark2', len(mgkit.plots.boxplot.DEFAULT_BOXPLOT_COLOURS)))
}
fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45),
 fill_box=True,
 colours=boxplot_colors
)

[image: ../../_images/examples_plots_boxplot_16_0.png]

Change data colors and the median color

[10]:

fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10))
_ = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45),
 fill_box=True,
 colours=dict(medians='k'),
 data_colours={x: y for x, y in zip(data.index, sns.color_palette('hls', len(data.index)))}
)

[image: ../../_images/examples_plots_boxplot_18_0.png]

Adding data points

[11]:

reload(mgkit.plots.boxplot)
fig, ax = mgkit.plots.get_single_figure(figsize=(30, 10), dpi=300)

data_colours = {x: y for x, y in zip(data.index, sns.color_palette('Dark2', len(data.index)))}

plot_data = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45),
 fill_box=False,
 data_colours=data_colours,
 box_vert=True
)

#note that box_vert must be the same in both boxplot_dataframe and add_values_to_boxplot. Their default is the opposite, now.
mgkit.plots.boxplot.add_values_to_boxplot(
 data,
 ax,
 plot_data,
 data.index,
 data_colours=data_colours,
 s=600,
 alpha=0.5,
 box_vert=True
)

[image: ../../_images/examples_plots_boxplot_20_0.png]

Adding Significance annotations

[12]:

reload(mgkit.plots.boxplot)
fig, ax = mgkit.plots.get_single_figure(figsize=(20, 10), dpi=300)

data_colours = {x: y for x, y in zip(data.index, sns.color_palette('Dark2', len(data.index)))}

plot_data = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45),
 fill_box=False,
 data_colours=data_colours,
 box_vert=True
)

#note that box_vert must be the same in both boxplot_dataframe and add_values_to_boxplot. Their default is the opposite, now.
mgkit.plots.boxplot.add_values_to_boxplot(
 data,
 ax,
 plot_data,
 data.index,
 data_colours=data_colours,
 s=600,
 alpha=0.5,
 box_vert=True
)
mgkit.plots.boxplot.add_significance_to_boxplot(
 [
 (0, 1),
 (1, 3),
 (2, 3),
 (7, 8),
 (4, 6)
],
 ax,
 (21850, 21750),
 box_vert=True,
 fontsize=32
)
_ = ax.set_ylim(top=22500)

[image: ../../_images/examples_plots_boxplot_22_0.png]

Changed direction, different palette and marker

[13]:

reload(mgkit.plots.boxplot)
fig, ax = mgkit.plots.get_single_figure(figsize=(20, 15), dpi=300)

data_colours = {x: y for x, y in zip(data.index, sns.color_palette('Set1', len(data.index)))}

plot_data = mgkit.plots.boxplot.boxplot_dataframe(
 data,
 data.index,
 ax,
 label_map={x: 'label {}'.format(x) for x in data.index},
 fonts=dict(fontsize=22, rotation=45),
 fill_box=False,
 data_colours=data_colours,
 box_vert=False
)

#note that box_vert must be the same in both boxplot_dataframe and add_values_to_boxplot. Their default is the opposite, now.
mgkit.plots.boxplot.add_values_to_boxplot(
 data,
 ax,
 plot_data,
 data.index,
 data_colours=data_colours,
 s=600,
 alpha=0.5,
 marker='|',
 linewidth=8,
 box_vert=False
)

[image: ../../_images/examples_plots_boxplot_24_0.png]

 Heatmaps

Heatmaps

[1]:

import mgkit.plots
import numpy
import pandas
import seaborn as sns
import matplotlib.colors

Random matrix and color map init

[2]:

nrow = 50
ncol = nrow

data = pandas.DataFrame(
{
 x: numpy.random.negative_binomial(500, 0.5, nrow)
 for x in xrange(ncol)
}
)

[3]:

sns.palplot(sns.color_palette('Blues', 9))

[image: ../../_images/examples_plots_heatmap_4_0.png]

[4]:

cmap = matplotlib.colors.ListedColormap(sns.color_palette('Blues', 9))

Basic plot

[5]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10,10), aspect='equal')
mgkit.plots.heatmap.baseheatmap(data, ax, cmap=cmap)

[5]:

<matplotlib.collections.QuadMesh at 0x7f83af51e850>

[image: ../../_images/examples_plots_heatmap_7_1.png]

Add numbers to the heatmap

Default

[6]:

fig, ax = mgkit.plots.get_single_figure(figsize=(20,20))
mgkit.plots.heatmap.baseheatmap(data.iloc[:20, :20], ax, cmap=cmap, annot=True)

[6]:

<matplotlib.collections.QuadMesh at 0x7f83ab9d1110>

[image: ../../_images/examples_plots_heatmap_10_1.png]

Change format of numbers

[7]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10,10))
mgkit.plots.heatmap.baseheatmap(
 data.iloc[:10, :10],
 ax,
 cmap=cmap,
 annot=True,
 annotopts=dict(format=lambda x: "{:.1f}".format(x))
)

[7]:

<matplotlib.collections.QuadMesh at 0x7f83af5636d0>

[image: ../../_images/examples_plots_heatmap_12_1.png]

[8]:

fig, ax = mgkit.plots.get_single_figure(figsize=(15,15))
mgkit.plots.heatmap.baseheatmap(
 data.iloc[:20, :20],
 ax,
 cmap=cmap,
 annot=True,
 annotopts=dict(
 format=lambda x: "%.1f" % x,
 fontsize=10,
 color='r'
)
)

[8]:

<matplotlib.collections.QuadMesh at 0x7f83ad6f5310>

[image: ../../_images/examples_plots_heatmap_13_1.png]

Using Boundaries for the colors

[9]:

norm = matplotlib.colors.BoundaryNorm([0, 300, 500, 700, 900, 1000], cmap.N)

fig, ax = mgkit.plots.get_single_figure(figsize=(10,10), aspect='equal')
mgkit.plots.heatmap.baseheatmap(data, ax, cmap=cmap, norm=norm)

[9]:

<matplotlib.collections.QuadMesh at 0x7f83ad3a6a10>

[image: ../../_images/examples_plots_heatmap_15_1.png]

Normalising the colors

[10]:

norm = matplotlib.colors.Normalize(vmin=400, vmax=700, clip=True)

fig, ax = mgkit.plots.get_single_figure(figsize=(10,10), aspect='equal')
mgkit.plots.heatmap.baseheatmap(data, ax, cmap=cmap, norm=norm)

[10]:

<matplotlib.collections.QuadMesh at 0x7f83ad1fe710>

[image: ../../_images/examples_plots_heatmap_17_1.png]

Grouping labels

[11]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10,10), aspect='equal')
mgkit.plots.heatmap.baseheatmap(data, ax, cmap=cmap)
mgkit.plots.grouped_spine(
 [range(10), range(10, 20), range(20, 30), range(30, 40), range(40, 50)],
 ['first', 'second', 'third', 'fourth', 'fifth'],
 ax
)

[image: ../../_images/examples_plots_heatmap_19_0.png]

Reversing the order of the rows

[12]:

fig, ax = mgkit.plots.get_single_figure(figsize=(10,10), aspect='equal')
mgkit.plots.heatmap.baseheatmap(data.loc[data.index[::-1]], ax, cmap=cmap)
mgkit.plots.grouped_spine(
 [range(10), range(10, 20), range(20, 30), range(30, 40), range(40, 50)][::-1],
 ['first', 'second', 'third', 'fourth', 'fifth'][::-1],
 ax
)

[image: ../../_images/examples_plots_heatmap_21_0.png]

A dendrogram from clustering the data

Clustering rows

[13]:

fig, ax = mgkit.plots.get_single_figure(figsize=(20, 5))
_ = mgkit.plots.heatmap.dendrogram(data, ax)

/mnt/c/Users/frubino/Documents/repositories/mgkit/mgkit/plots/heatmap.py:241: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix
 clusters = hclust.linkage(pairwise_dists, method=method)

[image: ../../_images/examples_plots_heatmap_24_1.png]

Clustering colums (You need the transposed matrix)

[14]:

fig, ax = mgkit.plots.get_single_figure(figsize=(20, 5))
_ = mgkit.plots.heatmap.dendrogram(data.T, ax)

[image: ../../_images/examples_plots_heatmap_26_0.png]

A simple clustered heatmap, look at the code for customisation

[15]:

mgkit.plots.heatmap.heatmap_clustered(data, figsize=(20, 15), cmap=cmap)

[image: ../../_images/examples_plots_heatmap_28_0.png]

 Misc. Plots Tips

Misc. Plots Tips

A few tips that can be useful when making plots with matplotlib

Trim Figure

Sometimes the plot is way smaller than the chosen figure size. When saving a figure to disk, using the figure.savefig, a good idea is to use bbox_inches=’tight’ to start with and adding pad_inches=0 to remove the rest of the space.

[2]:

import mgkit.plots
import numpy
import pandas
import seaborn as sns
import matplotlib.colors
nrow = 50
ncol = nrow

data = pandas.DataFrame(
{
 x: numpy.random.negative_binomial(500, 0.5, nrow)
 for x in xrange(ncol)
}
)
sns.palplot(sns.color_palette('Blues', 9))
cmap = matplotlib.colors.ListedColormap(sns.color_palette('Blues', 9))

fig, ax = mgkit.plots.get_single_figure(figsize=(20,10), aspect='equal')
mgkit.plots.heatmap.baseheatmap(data.loc[data.index[::-1]], ax, cmap=cmap)
mgkit.plots.grouped_spine(
 [range(10), range(10, 20), range(20, 30), range(30, 40), range(40, 50)][::-1],
 ['first', 'second', 'third', 'fourth', 'fifth'][::-1],
 ax
)
This will save the figure "as is"
fig.savefig('test-trim.pdf')
This will save the figure removing most of the unused space
fig.savefig('test-trim-tight.pdf', bbox_inches='tight')

[image: ../../_images/examples_plots_misc-plots_2_0.png]

[image: ../../_images/examples_plots_misc-plots_2_1.png]

 Examples of the mgkit.db package

Examples of the mgkit.db package

Imports

[84]:

from mgkit.io import gff
import mgkit.net
from mgkit.db import dbm
from mgkit.db import mongo
import mgkit.taxon
import gzip

Download Example GFF

[66]:

This will just load the data from the repository and save it in the same directory as
this notebook
data = mgkit.net.url_read('https://bitbucket.org/setsuna80/mgkit/downloads/assembly.gff.gz')
The data is compressed
open('assembly.gff.gz', 'w').write(data)

GFF Annotations

The are a few ways to load the GFF, but the result of parse_gff is a generator that yields one annotation at a time when it’s iterate over. One way to keep the annotations in memory is building a dictionary, with the unique identifier for each annotation (called uid) used as key, while the annotation object is the value.

[4]:

mgkit.io.gff.parse_gff can read compressed data, gzip, bz2 (also lzma on python3)
annotations = {
 annotation.uid: annotation
 for annotation in gff.parse_gff('assembly.gff.gz')
}

Each annotation is parsed and an instance of the mgkit.io.gff.Annotation is created. The class contains several properties, like the unique identifier (uid), the gene identifier (gene_id) and the taxon identifier (taxon_id)

[30]:

annotation = annotations['d002b31c-1d78-438c-b8f9-aba791807724']
print annotation

print annotation.uid, annotation.gene_id, annotation.taxon_id

NODE_57290(-):1-87
d002b31c-1d78-438c-b8f9-aba791807724 Q72QU2 2

Other properties and methods can be accessed, like the Annotation.get_mappings to get a dictionary of all mappings, or using the len function on the instance to get it’s length (or using the property length).

[11]:

print len(annotation), annotation.length
print annotation.get_mappings()

87 87
{'ko': ['K03695']}

Taxonomy and Annotations

When using metagenomics, one of the problem is associated functionality to taxonomy. MGKit contains a class that can read the taxonomy from Uniprot, which is compatible with NCBI taxonomy. The mgkit.taxon contains the UniprotTaxonomy that is use to store and in part search the taxonomy. The module contains many more functions to resolve different levels of the taxonomy. A few examples applied to the annotations loaded follow.

[90]:

This will just load the data from the repository and save it in the same directory as
this notebook
data = mgkit.net.url_read(
 "https://bitbucket.org/setsuna80/mgkit/downloads/taxonomy.pickle.gz"
)
open('taxonomy.pickle.gz', 'w').write(data)
del data

[91]:

Using compress taxonomy files makes it slower to load
taxonomy = mgkit.taxon.UniprotTaxonomy('taxonomy.pickle.gz')

[103]:

to find the Bacteoidales taxon identifier
taxonomy.find_by_name('bacteroidales')

[103]:

[171549]

[121]:

to find all the annotations that belong to the Order Bacteroidales
count = 0
for annotation in annotations.itervalues():
 if mgkit.taxon.is_ancestor(taxonomy, annotation.taxon_id, 171549):
 count += 1
 print annotation.uid, annotation.gene_id
print "Number of annotation:", count

7233587c-b80d-4908-8ead-92734deeec81 Q7MV19
5322b316-46e5-44cf-9eb1-ef94355c7855 Q01VN6
a7308f6f-7b17-4b00-8afa-92ebecef3dd3 Q8XP14
195118b7-1236-48ad-8812-e0ec3100e7d9 Q7MV19
14b3cc41-050a-4949-b085-75db0cda12ec Q8A294
d1dad026-09ac-48e4-95fe-158e39d96a0d P49008
01b819f8-1444-4f25-a3fa-93e160fa58c2 Q7MVL1
4b3ce614-cc8a-47ea-a046-f9ca7c7ab16c Q5LI72
65bae5c6-0d23-4a08-ae3f-aec2763f4621 Q7MV19
3aef43ea-4e94-4940-bf85-743950e5ad8a Q9AGG3
16794c3c-97b8-4453-8d14-a5e37c8969b4 A6LB11
bd92adff-b8d9-411f-9488-7604eb580fd6 Q89YZ6
3441f906-f63d-45fe-a4e5-e639439d19db A6LD25
cd08ae89-1f1e-4875-851e-c0c55de8c764 A6LA51
b3bf4054-4f31-4a8a-bf19-fd0e65c56867 A6LI30
44bdfb77-1606-4194-b410-9a22c75b3b5b Q7MV19
3b5e126e-25ec-460d-a439-2520bebe0a3d A6KZH6
e908c5b1-9dec-4406-b952-009aab3fd778 A6LDS1
b425ef29-0bc0-4de7-ad96-abe5c7b75f96 Q8A9M7
2a3558c3-6f7b-49a4-a8d3-c2b0cef287d6 Q7MXZ1
376d70e0-6591-4b2b-9a06-1d9fb7fdbc66 Q7M9Y2
ff7fd5ef-9be2-404c-8137-89f368071a4e Q8A294
2665ff2c-4e9a-4c7a-9604-8433fa2ae202 A6LHY5
dd9a44d5-ed1e-4350-b05c-f0cfd510e669 A6L170
255e75a1-a59c-43fd-9396-17a3566b3063 Q8A0F5
49474358-7962-4b0c-b52a-5de935f17bfc A6LFA6
27eb1efe-ff07-401c-93db-958a38e866bc Q7MWM7
746805f5-0fdc-4499-953f-7be496b9c784 Q7MU65
e3be2158-c013-4e58-a073-ab8e3c893094 Q8A8Y4
e028b0e9-802f-4f1b-b055-f5ecca786170 Q8A1D3
f2919fc6-d8e2-4fe7-ac9f-152c46d0ebbb Q7MV19
b65468b2-d4e7-456b-871d-9cd96fa4dd48 Q02XT4
e1643d1d-12c3-4397-a6a7-d2a24f203c4a Q8A294
0d9cd52c-5969-49f7-866c-e8c5c9783b79 Q8A294
cdd362ba-448f-475f-a638-d6473b471572 A6LD68
7af092eb-20c5-46b4-b8bb-e9b0c99a8ce5 Q5LGH0
2d9172a4-fe51-4baa-a8fb-66f020ba6452 Q7MVL1
Number of annotation: 37

[109]:

to find out the Phyla represented in the annotations
print set(
 taxonomy.get_ranked_taxon(annotation.taxon_id, rank='phylum').s_name
 for annotation in annotations.itervalues()
)

set(['arthropoda', 'microsporidia', 'korarchaeota', 'viruses', 'nematoda', 'bacteroidetes', 'nanoarchaeota', 'tenericutes', 'thermotogae', 'chlorophyta', 'cellular organisms', 'fibrobacteres', 'bacteria', 'euryarchaeota', 'verrucomicrobia', 'annelida', 'eukaryota', 'aquificae', 'ascomycota', 'actinobacteria', 'chlorobi', 'deferribacteres', 'archaea', 'bacillariophyta', 'streptophyta', 'chlamydiae', 'apicomplexa', 'dictyoglomi', 'cloacimonetes', 'gemmatimonadetes', 'thaumarchaeota', 'proteobacteria', 'acidobacteria', 'spirochaetes', 'cyanobacteria', 'firmicutes', 'chloroflexi', 'planctomycetes', 'chordata', 'euglenida', 'elusimicrobia', 'basidiomycota', 'xanthophyceae', 'nitrospirae', 'fusobacteria', 'deinococcus-thermus', 'platyhelminthes', 'crenarchaeota'])

[116]:

to get the lineage of the first annotations
annotation = annotations['b97ead95-81a7-4caf-8d25-349ee6e276c1']
print taxonomy[annotation.taxon_id].s_name, mgkit.taxon.get_lineage(taxonomy, annotation.taxon_id)

escherichia coli (strain k12) [131567, 2, 1224, 1236, 91347, 543, 561, 562]

[115]:

to get the names, quickly
annotation = annotations['b97ead95-81a7-4caf-8d25-349ee6e276c1']
print taxonomy[annotation.taxon_id].s_name, mgkit.taxon.get_lineage(taxonomy, annotation.taxon_id, names=True)

escherichia coli (strain k12) ['cellular organisms', 'bacteria', 'proteobacteria', 'gammaproteobacteria', 'enterobacteriales', 'enterobacteriaceae', 'escherichia', 'escherichia coli']

Issues

Keeping the annotations in memory can lead to a high memory usage, as well as a long time traversing all of them to specifically filter them. MGKit uses two solutions to interface with DBs, one is using a dbm-like database, semidbm and the other is using MongoDB.

semidbm

Packages to use dbm database are included with Python, but they depend on the type of OS python is installed onto. A pure Python implementation of a dbm is semidbm [https://github.com/jamesls/semidbm]. As other dbm, it works in a similar way as a dictionary, while keeping the memory usage low. To create a semidbm DB from annotations, the get-gff-info can be used, using the dbm command:

[21]:

!get-gff-info dbm -d assembly-db assembly.gff.gz

assembly-db
INFO - mgkit.db.dbm: DB "assembly-db" opened/created
INFO - mgkit.io.gff: Loading GFF from file (assembly.gff.gz)

or interactively, using mgkit.db.dbm.create_gff_dbm:

[27]:

db = dbm.create_gff_dbm(annotations.itervalues(), 'assembly-db')

assembly-db

Which also return an instance of db. semidbm allows the use of only strings as keys and strings as values, so for the same annotation as before, you see what MGKit stores in it, the actual GFF line:

[28]:

db['d002b31c-1d78-438c-b8f9-aba791807724']

[28]:

'NODE_57290\tBLAST\tCDS\t1\t87\t51.6\t-\t0\tSRR001322_cov="0";SRR001323_cov="0";SRR001325_cov="3";SRR001326_cov="0";bitscore="51.6";cov="3";db="UNIPROT-SP";dbq="10";exp_nonsyn="200";exp_syn="61";gene_id="Q72QU2";identity="75.9";map_KO="K03695";taxon_db="NCBI-NT";taxon_id="2";uid="d002b31c-1d78-438c-b8f9-aba791807724"\n'

The GFF line must then be converted back into an Annotation instance. To automate the process, the mgkit.db.dbm.GFFDB class wraps the semidbm. The same example as the one above:

[56]:

db = dbm.GFFDB('assembly-db')
db['d002b31c-1d78-438c-b8f9-aba791807724']

[56]:

NODE_57290(-):1-87

It can also be iterated over as a dictionary (for compatibility, both iteritems and items return an iterator)

[52]:

for uid in db.db:
 print uid, db[uid]
 break

50dccb4d-3a49-41ed-bf8c-a1906172d8a5 NODE_49806(+):3-116

[55]:

for uid, annotation in db.iteritems():
 print uid, annotation
 break

50dccb4d-3a49-41ed-bf8c-a1906172d8a5 NODE_49806(+):3-116

Using this class, it is possible to use a DB as a drop-in replacement for a dictionary in a script that used annotations stored in memory in MGKit. The examples using the taxonomy will works in the same way, for example.

Using MongoDB

MongoDB [https://www.mongodb.org/] is Document based DB that is not based on SQL. One of the advantage of it the absence of a schema, which makes it easy to insert annotations into it. Moreover, the data in a MongoDB is easily accessible from a variety of programming languages, as well as its own shell. Another advantage is the possiblity to query the annotations and index specific values to speed up them.

In the same way as with dbm, the get-gff-info can help produce a file that can be directly loaded into a mongod instance.

The following example uses pymongo (the official client library for Python) and requires a mongod instance running on the same machine. The annotations will be imported into the test database, into the gff collection.

[69]:

!gunzip -c assembly.gff.gz | get-gff-info mongodb | mongoimport --db test --collection gff --drop

2015-12-04T15:38:41.355+1000 connected to: localhost
2015-12-04T15:38:41.355+1000 dropping: test.gff
INFO - mgkit.io.gff: Loading GFF from file (<stdin>)
2015-12-04T15:38:43.830+1000 imported 9135 documents

You can use the pymongo module directly or just use the mgkit.db.mongo.GFFDB class to automate connection and conversion of the JSON documents back into Annotation objects.

[72]:

db = mongo.GFFDB('test', 'gff')

[74]:

for annotation in db.find_annotation():
 print annotation.uid, annotation.gene_id
 break

303fbf1f-8140-4f9e-9c44-ae089e67bdc3 O93746

The DB can be queried by passing the GFF.find_annotation method the same query that are explained in Pymongo documentation [https://docs.mongodb.org/getting-started/python/client/].

[76]:

To look for all annotations that have the KO mapping to K01883
for annotation in db.find_annotation({'map.ko': 'K01883'}):
 print annotation

NODE_22940(-):2-97
NODE_8691(+):2-88
NODE_8691(+):5-91
NODE_30222(+):11-97
NODE_30222(+):2-82
NODE_30222(+):8-94
NODE_30222(+):5-91
NODE_36783(+):11-115
NODE_2009(-):3-104
NODE_2009(-):12-110
NODE_19876(+):3-113
NODE_35927(-):2-76
NODE_35927(-):8-163
NODE_31317(+):2-73
NODE_31317(+):5-88
NODE_29415(+):29-100
NODE_45868(-):1-96
NODE_1013(-):33-128
NODE_39238(-):1-90
NODE_39238(-):4-93
NODE_6581(-):3-116
NODE_40758(-):2-163
NODE_7805(-):1-117
NODE_28135(+):3-116
NODE_8575(+):34-123
NODE_8575(+):28-114
NODE_6979(+):1-99
NODE_35052(-):2-106
NODE_13245(-):2-94
NODE_13245(-):5-97
NODE_30508(+):1-99
NODE_19190(+):18-227
NODE_19190(+):3-113
NODE_16671(+):2-106

[79]:

To look for all annotations that have the KO mapping to K01883 *AND*
the taxonomy was inferred from a blast to NCBI (see refinement of
taxonomy in theTutorial - Gene Prediction)
for annotation in db.find_annotation({'map.ko': 'K01883', 'taxon_db': 'NCBI-NT'}):
 print annotation

NODE_22940(-):2-97
NODE_30222(+):11-97
NODE_30222(+):2-82
NODE_30222(+):8-94
NODE_30222(+):5-91
NODE_40758(-):2-163

[117]:

Finding all annotation from a specific taxon
for annotation in db.find_annotation({'taxon_id': 224911}):
 print annotation

NODE_36848(-):2-94
NODE_58432(+):8-124
NODE_48731(+):5-118
NODE_13988(+):20-190
NODE_10564(-):3-101
NODE_61599(+):8-106
NODE_58191(+):1-99
NODE_36561(+):5-115
NODE_33951(-):13-99
NODE_20537(-):6-101
NODE_72294(-):3-95

Using Taxonomy

The usual approach about the taxonomy is to traverse all the annotations (those returned by one of the previous queries, even) and use the functionality in the mgkit.taxon module. It is possible to repeat the example that search all annotations that belong to Order Bacteroidales, but the records must be loaded with the lineage into the DB. This can be done having a taxonomy file, taxonomy.pickle.gz in our case, with the following command:

[118]:

!gunzip -c assembly.gff.gz | get-gff-info mongodb -t taxonomy.pickle.gz | mongoimport --db test --collection gff --drop

2015-12-04T16:32:13.785+1000 connected to: localhost
2015-12-04T16:32:13.786+1000 dropping: test.gff
2015-12-04T16:32:16.783+1000 test.gff 0.0 B
2015-12-04T16:32:19.783+1000 test.gff 0.0 B
INFO - mgkit.taxon: Loading taxonomy from file taxonomy.pickle.gz
2015-12-04T16:32:22.785+1000 test.gff 0.0 B
2015-12-04T16:32:25.782+1000 test.gff 0.0 B
2015-12-04T16:32:28.784+1000 test.gff 0.0 B
2015-12-04T16:32:31.780+1000 test.gff 0.0 B
2015-12-04T16:32:34.783+1000 test.gff 0.0 B
2015-12-04T16:32:37.780+1000 test.gff 0.0 B
2015-12-04T16:32:40.782+1000 test.gff 0.0 B
2015-12-04T16:32:43.782+1000 test.gff 0.0 B
2015-12-04T16:32:46.785+1000 test.gff 0.0 B
2015-12-04T16:32:49.785+1000 test.gff 0.0 B
2015-12-04T16:32:52.783+1000 test.gff 0.0 B
2015-12-04T16:32:55.783+1000 test.gff 0.0 B
2015-12-04T16:32:58.781+1000 test.gff 0.0 B
2015-12-04T16:33:01.780+1000 test.gff 0.0 B
2015-12-04T16:33:04.783+1000 test.gff 0.0 B
2015-12-04T16:33:07.781+1000 test.gff 0.0 B
2015-12-04T16:33:10.781+1000 test.gff 0.0 B
2015-12-04T16:33:13.781+1000 test.gff 0.0 B
2015-12-04T16:33:16.781+1000 test.gff 0.0 B
2015-12-04T16:33:19.783+1000 test.gff 0.0 B
2015-12-04T16:33:22.781+1000 test.gff 0.0 B
2015-12-04T16:33:25.782+1000 test.gff 0.0 B
2015-12-04T16:33:28.781+1000 test.gff 0.0 B
2015-12-04T16:33:31.783+1000 test.gff 0.0 B
2015-12-04T16:33:34.785+1000 test.gff 0.0 B
2015-12-04T16:33:37.781+1000 test.gff 0.0 B
2015-12-04T16:33:40.780+1000 test.gff 0.0 B
2015-12-04T16:33:43.782+1000 test.gff 0.0 B
2015-12-04T16:33:46.780+1000 test.gff 0.0 B
2015-12-04T16:33:49.780+1000 test.gff 0.0 B
2015-12-04T16:33:52.781+1000 test.gff 0.0 B
2015-12-04T16:33:55.782+1000 test.gff 0.0 B
2015-12-04T16:33:58.785+1000 test.gff 0.0 B
2015-12-04T16:34:01.784+1000 test.gff 0.0 B
2015-12-04T16:34:04.781+1000 test.gff 0.0 B
2015-12-04T16:34:07.782+1000 test.gff 0.0 B
2015-12-04T16:34:10.785+1000 test.gff 0.0 B
2015-12-04T16:34:13.781+1000 test.gff 0.0 B
2015-12-04T16:34:16.784+1000 test.gff 0.0 B
2015-12-04T16:34:19.783+1000 test.gff 0.0 B
2015-12-04T16:34:22.780+1000 test.gff 0.0 B
2015-12-04T16:34:25.785+1000 test.gff 0.0 B
2015-12-04T16:34:28.781+1000 test.gff 0.0 B
2015-12-04T16:34:31.780+1000 test.gff 0.0 B
2015-12-04T16:34:34.783+1000 test.gff 0.0 B
2015-12-04T16:34:37.780+1000 test.gff 0.0 B
2015-12-04T16:34:40.782+1000 test.gff 0.0 B
2015-12-04T16:34:43.781+1000 test.gff 0.0 B
2015-12-04T16:34:46.785+1000 test.gff 0.0 B
INFO - mgkit.workflow.extract_gff_info: Using cached calls to lineage
INFO - mgkit.io.gff: Loading GFF from file (<stdin>)
2015-12-04T16:34:49.783+1000 test.gff 2.7 MB
2015-12-04T16:34:51.874+1000 imported 9135 documents

The script will first load the taxonomy and add to each record in the database the lineage key. This contains an array of integers, that are the output of the mgkit.taxon.lineage function and can be searched using:

[123]:

count = 0
for annotation in db.find_annotation({'lineage': 171549}):
 count += 1
 print annotation
print "Number of annotation:", count

NODE_33533(-):2-64
NODE_18827(+):2-127
NODE_25363(+):3-95
NODE_69486(+):1-111
NODE_13380(-):3-95
NODE_8404(+):3-176
NODE_71367(+):2-106
NODE_50779(-):1-102
NODE_20694(+):129-221
NODE_38976(+):4-102
NODE_69904(+):9-110
NODE_1963(-):2-94
NODE_41194(-):18-98
NODE_47622(+):1-99
NODE_56590(+):2-103
NODE_66803(+):23-169
NODE_14043(+):4-96
NODE_35099(+):18-122
NODE_48598(-):20-97
NODE_58511(+):1-96
NODE_70185(+):2-103
NODE_56348(-):4-93
NODE_56348(-):13-102
NODE_56348(-):10-99
NODE_32336(-):1-114
NODE_59685(+):3-107
NODE_57945(+):12-134
NODE_59259(-):1-108
NODE_28794(-):5-133
NODE_72312(-):1-96
NODE_37438(+):3-107
NODE_6370(+):123-224
NODE_67647(+):2-100
NODE_28480(-):1-93
NODE_72226(+):8-103
NODE_46503(+):3-104
NODE_20236(+):1-90
Number of annotation: 37

And as you can see, the number of annotations is the same as the example above. The use of MongoDB to store the annotations can make it simplier to use richer queries, even from other languages.

 MGKit GFF Specifications

MGKit GFF Specifications

The GFF produced with MGKit follows the conventions of GFF/GTF files but it provides some additional fields in the 9th column which translate to a
Python dictionary when an annotation is loaded into an Annotation instance.

The 9th column is a list of key=value item, separated by a semicolon (;); each value is also expected to be quoted with double quotes and the values to not include a semicolon or other characters that can make the parsing difficult. MGKit uses urllib.quote() to encode those characters and also ” ()/”. The mgkit.io.gff.from_gff() uses urllib.unquote() to set the values.

Warning

As the last column translates to a dictionary in the data structures, duplicate keys are not allowed. mgkit.io.gff.from_gff() raises an exception if any are found.

Reserved Values

Any key can be added to a GFF annotation, but MGKit expects a few key to be in the GFF annotation as summarised in the following tables.

Reserved values, used by the scripts

	Key

	Value

	Explanation

	gene_id

	any string

	used to identify the gene predicted

	db

	any string, like UNIPROT-SP, UNIPROT-TR, NCBI-NT

	identifies the database used to make the gene_id prediction

	taxon_db

	any string, like UNIPROT-SP, UNIPROT-TR, NCBI-NT

	identifies the database used to make the taxon_id prediction

	dbq

	integer

	identifies the quality of the database, used when filtering annotations

	taxon_id

	integer

	identifies the annotation taxon, NCBI taxonomy is used

	uid

	string

	unique identifier for the annotation, any string is accepted but a value is assigned by using uuid.uuid4() [https://docs.python.org/3/library/uuid.html#uuid.uuid4]

	cov and {any}_cov

	integer

	coverage for the annotation over all samples, keys ending with _cov indicates coverage for each sample

	exp_syn, exp_nonsyn

	integer

	used for expected number of synonymous and non-synonymous changes for the annotation

The following keys are added by different scripts and may be used in different scripts or annotation methods.

Interpreted Values

	Key

	Value

	Explanation

	Used

	taxon_name

	string

	name of the taxon

	not used

	lineage

	string

	taxon lineage

	not used

	EC

	comma separated values

	list of EC numbers associated to the annotation

	used by mgkit.io.gff.Annotation.get_ec()

	map_{any}

	comma separated values

	list of mapping to a specific db (e.g. eggNOG -> map_EGGNOG)

	used by mgkit.io.gff.Annotation.get_mapping()

	counts_{any}

	float

	Stores the count data for a sample (e.g. counts_Sample1)

	used by script add-gff-info

	fpkms_{any}

	float

	Stores the count data for a sample (e.g. fpkms_Sample1)

	used by script add-gff-info

 Library Reference

Library Reference

	mgkit package
	Subpackages

	Submodules

	Module contents

	mgkit.align module

	mgkit.consts module

	mgkit.counts package
	Submodules

	Module contents

	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

	mgkit.db package
	Submodules

	Module contents

	mgkit.db.dbm module

	mgkit.db.mongo module

	mgkit.filter package
	Submodules

	Module contents

	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

	mgkit.graphs module

	mgkit.io package
	Submodules

	Module contents

	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

	mgkit.kegg module

	mgkit.logger module

	mgkit.mappings package
	Submodules

	Module contents

	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

	mgkit.net package
	Submodules

	Module contents

	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

	mgkit.plots package
	Submodules

	Module contents

	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

	mgkit.simple_cache module

	mgkit.snps package
	Submodules

	Module contents

	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

	mgkit.taxon module

	mgkit.utils package
	Submodules

	Module contents

	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

	mgkit.workflow package
	Submodules

	Module contents

	mgkit.workflow.add_gff_info module
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	mgkit.workflow.blast2gff module
	Uniprot

	BlastDB

	Changes

	mgkit.workflow.extract_gff_info module
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	mgkit.workflow.fasta_utils module
	split command

	translate command

	uid command

	Changes

	mgkit.workflow.fastq_utils module
	Commands

	Changes

	mgkit.workflow.filter_gff module
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	mgkit.workflow.hmmer2gff module
	Changes

	mgkit.workflow.json2gff module
	mongodb command

	mgkit.workflow.sampling_utils module
	Resampling Utilities

	mgkit.workflow.snp_parser module
	Changes

	mgkit.workflow.taxon_utils module
	Last Common Ancestor (lca and lca_line)

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	mgkit.workflow.utils module

	mgkit
	mgkit package

 mgkit package

mgkit package

Subpackages

	mgkit.counts package
	Submodules
	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

	Module contents

	mgkit.db package
	Submodules
	mgkit.db.dbm module

	mgkit.db.mongo module

	Module contents

	mgkit.filter package
	Submodules
	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

	Module contents

	mgkit.io package
	Submodules
	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

	Module contents

	mgkit.mappings package
	Submodules
	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

	Module contents

	mgkit.net package
	Submodules
	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

	Module contents

	mgkit.plots package
	Submodules
	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

	Module contents

	mgkit.snps package
	Submodules
	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

	Module contents

	mgkit.utils package
	Submodules
	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

	Module contents

	mgkit.workflow package
	Submodules
	mgkit.workflow.add_gff_info module
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	mgkit.workflow.blast2gff module
	Uniprot

	BlastDB

	Changes

	mgkit.workflow.extract_gff_info module
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	mgkit.workflow.fasta_utils module
	split command

	translate command

	uid command

	Changes

	mgkit.workflow.fastq_utils module
	Commands

	Changes

	mgkit.workflow.filter_gff module
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	mgkit.workflow.hmmer2gff module
	Changes

	mgkit.workflow.json2gff module
	mongodb command

	mgkit.workflow.sampling_utils module
	Resampling Utilities
	sample command

	sample_stream command

	sync command

	rand_seq command

	Changes

	mgkit.workflow.snp_parser module
	Changes

	mgkit.workflow.taxon_utils module
	Last Common Ancestor (lca and lca_line)
	Krona Output

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	mgkit.workflow.utils module

	Module contents

Submodules

	mgkit.align module

	mgkit.consts module

	mgkit.graphs module

	mgkit.kegg module

	mgkit.logger module

	mgkit.simple_cache module

	mgkit.taxon module

Module contents

Metagenomics Framework

	
exception mgkit.DependencyError(package)

	Bases: exceptions.Exception

Raised if an optional requirement is needed

	
mgkit.check_version(version)

	

	
mgkit.cite(file_handle=<open file '<stderr>', mode 'w'>)

	Print citation to the specified stream

 mgkit.counts package

mgkit.counts package

Submodules

	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

Module contents

 mgkit.counts.func module

mgkit.counts.func module

New in version 0.1.13.

Misc functions for count data

	
mgkit.counts.func.batch_load_htseq_counts(count_files, samples=None, cut_name=None)

	Loads a list of htseq count result files and returns a DataFrame
(IDxSAMPLE)

The sample names are names are the file names if samples and cut_name
are None, supplying a list of sample names with samples is the
preferred way, and cut_name is used for backward compatibility and as an
option in cases a string replace is enough.

	Parameters

	
	count_files (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	samples (iterable) – list of sample names, in the same order as
count_files

	cut_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to delete from the the file names to get the
sample names

	Returns

	with sample names as columns and gene_ids as index

	Return type

	pandas.DataFrame

	
mgkit.counts.func.filter_counts(counts_iter, info_func, gfilters=None, tfilters=None)

	Returns counts that pass filters for each uid associated gene_id and
taxon_id.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gfilters (iterable) – list of filters to apply to each uid associated
gene_id

	tfilters (iterable) – list of filters to apply to each uid associated
taxon_id

	Yields

	tuple – (uid, count) that pass filters

	
mgkit.counts.func.from_gff(annotations, samples, ann_func=None, sample_func=None)

	
New in version 0.3.1.

Loads count data from a GFF file, only for the requested samples. By
default the function returns a DataFrame where the index is the uid of
each annotation and the columns the requested samples.

This can be customised by supplying ann_func and sample_func.
sample_func is a function that accept a sample name and is expected to
return a string or a tuple. This will be used to change the columns in the
DataFrame. ann_func must accept an mgkit.io.gff.Annotation
instance and return an iterable, with each iteration yielding either a
single element or a tuple (for a MultiIndex DataFrame), each element
yielded will have the count of that annotation added to.

	Parameters

	
	annotation (iterable) – iterable yielding annotations

	samples (iterable) – list of samples to keep

	ann_func (func) – function used to customise the output

	sample_func (func) – function to customise the column elements

	Returns

	dataframe with the count data, columns are the samples and
rows the annotation counts (unless mapped with ann_func)

	Return type

	DataFrame

	Exmples:

	Assuming we have a list of annotations and sample SAMPLE1 and SAMPLE2
we can obtain the count table for all annotations with this

>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'])

Assuming we want to group the samples, for example treatment1,
treatment2 and control1, control2 into a MultiIndex DataFrame column

>>> sample_func = lambda x: ('T' if x.startswith('t') else 'C', x)
>>> from_gff(annotations, ['treatment1', 'treatment2', 'control1',
'control2'], sample_func=sample_func)

Annotations can be mapped to other levels for example instead of using
the uid that is the default, it can be mapped to the gene_id,
taxon_id information that is included in the annotation, resulting in a
MultiIndex index for the rows, with (gene_id, taxon_id) as key.

>>> ann_func = lambda x: [(x.gene_id, x.taxon_id)]
>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'], ann_func=ann_func)

	
mgkit.counts.func.get_uid_info(info_dict, uid)

	Simple function to get a value from a dictionary of tuples
(gene_id, taxon_id)

	
mgkit.counts.func.get_uid_info_ann(annotations, uid)

	Simple function to get a value from a dictionary of annotations

	
mgkit.counts.func.load_counts_from_gff(annotations, elem_func=<function <lambda>>, sample_func=None, nozero=True)

	
New in version 0.2.5.

Loads counts for each annotations that are stored into the annotation
counts_ attributes. Annotations with a total of 0 counts are skipped by
default (nozero=True), the row index is set to the uid of the annotation
and the column to the sample name. The functions used to transform the
indices expect the annotation (for the row, elem_func) and the sample
name (for the column, sample_func).

	Parameters

	
	annotations (iter) – iterable of annotations

	elem_func (func) – function that accepts an annotation and return a
str/int for a Index or a tuple for a MultiIndex, defaults to
returning the uid of the annotation

	sample_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function that accepts the sample name and
returns tuple for a MultiIndex. Defaults to None so no
transformation is performed

	nozero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, annotations with no counts are skipped

	
mgkit.counts.func.load_deseq2_results(file_name, taxon_id=None)

	
New in version 0.1.14.

Reads a CSV file output with DESeq2 results, adding a taxon_id to the index
for concatenating multiple results from different taxonomic groups.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name of the CSV

	Returns

	a MultiIndex DataFrame with the results

	Return type

	pandas.DataFrame

	
mgkit.counts.func.load_htseq_counts(file_handle, conv_func=<type 'int'>)

	
Changed in version 0.1.15: added conv_func parameter

Loads an HTSeq-count result file

	Parameters

	
	file_handle (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	conv_func (func) – function to convert the number from string, defaults
to int, but float can be used as well

	Yields

	tuple – first element is the gene_id and the second is the count

	
mgkit.counts.func.load_sample_counts(info_dict, counts_iter, taxonomy, inc_anc=None, rank=None, gene_map=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
Changed in version 0.1.14: added cached argument

Changed in version 0.1.15: added uid_used parameter

Changed in version 0.2.0: info_dict can be a function

Reads sample counts, filtering and mapping them if requested. It’s an
example of the usage of the above functions.

	Parameters

	
	info_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that has uid as key and
(gene_id, taxon_id) as value. In alternative a function that
accepts a uid as sole argument and returns (gene_id, taxon_id)

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
filtered and mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_genes(info_func, counts_iter, taxonomy, inc_anc=None, gene_map=None, ex_anc=None, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific gene_id. Another difference is the absence of any
assumption on the first parameter. It is expected to return a
(gene_id, taxon_id) tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index gene_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_taxon(info_func, counts_iter, taxonomy, inc_anc=None, rank=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific taxon. Another difference is the absence of any assumption
on the first parameter. It is expected to return a (gene_id, taxon_id)
tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index taxon_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts(counts_iter, info_func, gmapper=None, tmapper=None, index=None, uid_used=None)

	
Changed in version 0.1.14: added index parameter

Changed in version 0.1.15: added uid_used parameter

Maps counts according to the gmapper and tmapper functions. Each mapped
gene ID count is the sum of all uid that have the same ID(s). The same is
true for the taxa.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gmapper (func) – fucntion that accepts a gene_id and returns a list
of mapped IDs

	tmapper (func) – fucntion that accepts a taxon_id and returns a new
taxon_id

	index (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str]) – if None, the index of the Series if
(gene_id, taxon_id), if a str, it can be either gene or
taxon, to specify a single value

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts_to_category(counts, gene_map, nomap=False, nomap_id='NOMAP')

	Used to map the counts from a certain gene identifier to another. Genes
with no mappings are not counted, unless nomap=True, in which case they
are counted as nomap_id.

	Parameters

	
	counts (iterator) – an iterator that yield a tuple, with the first value
being the gene_id and the second value the count for it

	gene_map (dictionary) – a dictionary whose keys are the gene_id yield by
counts and the values are iterable of mapping identifiers

	nomap (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, counts for genes with no mappings in gene_map
are discarded, if True, they a counted as nomap_id

	nomap_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the mapping for genes with no mappings

	Returns

	mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_gene_id_to_map(gene_map, gene_id)

	Function that extract a list of gene mappings from a dictionary and returns
an empty list if the gene_id is not found.

	
mgkit.counts.func.map_taxon_id_to_rank(taxonomy, rank, taxon_id, include_higher=True)

	Maps a taxon_id to the request taxon rank. Returns None if
include_higher is False and the found rank is not the one requested.

Internally uses mgkit.taxon.Taxonomy.get_ranked_taxon()

	Parameters

	
	taxonomy – taxonomy instance

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxonomic rank requested

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to map

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	Returns

	if the mapping is successful, the ranked taxon_id is
returned, otherwise None is returned

	Return type

	(int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None])

 mgkit.counts.glm module

mgkit.counts.glm module

New in version 0.3.3.

GLM models with metagenomes and metatranscriptomes. Experimental

	
mgkit.counts.glm.fit_lowess_interpolate(endog, exog, frac=0.2, it=3, kind='slinear')

	Fits a lowess for the passed endog (Y) and exog (X) and returns an
interpolated function that describes it. The first 4 arguments are passed
to statsmodels.api.sm.nonparametric.lowess(), while the last one is
passed to scipy.interpolate.interp1d()

	Parameters

	
	endog (array) – array of the dependent variable (Y)

	exog (array) – array of the indipendent variable (X)

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the number of elements to use when fitting
(0.0-1.0)

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations to fit the lowess

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation to use

	Returns

	interpolated function representing the lowess fitted from the
data passed

	Return type

	func

	
mgkit.counts.glm.lowess_ci_bootstrap(endog, exog, num=100, frac=0.2, it=3, alpha=0.05, delta=0.0, min_value=0.001, kind='slinear')

	Bootstraps a lowess for the dependent (endog) and indipendent (exog)
arguments.

	Parameters

	
	endog (array) – indipendent variable (Y)

	exog (array) – indipendent variable (X)

	num (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations for the bootstrap

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the array to use when fitting

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations used to fit the lowess

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – confidence intervals for the bootstrap

	delta (float [https://docs.python.org/3/library/functions.html#float]) – passed to statsmodels.api.nonparametric.lowess()

	min_value (float [https://docs.python.org/3/library/functions.html#float]) – minimum value for the function to avoid out of
bounds

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation passed to
scipy.interpolate.interp1d()

	Returns

	the first element is the function describing the lowest
confidence interval, the second element is for the highest confidence
interval and the last one for the mean

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

Performance increase with the value of delta.

	
mgkit.counts.glm.optimise_alpha_scipy(formula, data, mean_func, q1_func, q2_func)

	
New in version 0.4.0.

Used to find an optimal alpha parameter for the Negative Binomial
distribution used in statsmodels, using the lowess functions from
lowess_ci_bootstrap().

	Parameters

	
	formula (str [https://docs.python.org/3/library/stdtypes.html#str]) – the formula used for the regression

	data (DataFrame) – DataFrame for regression

	mean_func (func) – function for the mean lowess_ci_bootstrap()

	q1_func (func) – function for the q1 lowess_ci_bootstrap()

	q2_func (func) – function for the q2 lowess_ci_bootstrap()

	Returns

	alpha value for the Negative Binomial

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.counts.glm.optimise_alpha_scipy_function(args, formula, data, criterion='aic')

	
New in version 0.4.0.

	
mgkit.counts.glm.variance_to_alpha(mu, func, min_alpha=0.001)

	Based on the variance defined in the Negative Binomial in statsmodels

var = mu + alpha * (mu ** 2)

	Parameters

	
	mu (float [https://docs.python.org/3/library/functions.html#float]) – mean to calculate the alphas for

	func (func) – function that returns the variace of the mean

	min_alpha (float [https://docs.python.org/3/library/functions.html#float]) – value of alpha if the func goes out of bounds

	Returns

	value of alpha for the passed mean

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 mgkit.counts.scaling module

mgkit.counts.scaling module

Scaling functions for counts

	
mgkit.counts.scaling.scale_deseq(dataframe)

	
New in version 0.1.13.

Scale a dataframe using the deseq scaling. Uses scale_factor_deseq()

	
mgkit.counts.scaling.scale_factor_deseq(dataframe)

	
New in version 0.1.13.

Returns the scale factor according to he deseq paper. The columns of the
dataframe are the samples.

size factor \(\hat{s}_{j}\) for sample j (from DESeq paper).

\[\hat{s}_{j} = median_{i} (
\frac
 {k_{ij}}
 {
 \left (
 \prod_{v=1}^{m}
 k_{iv}
 \right)^{1/m}
 }
)\]

	
mgkit.counts.scaling.scale_rpkm(dataframe, gene_len)

	
New in version 0.1.14.

Perform an RPKM scaling of the pandas dataframe/series supplied using the
gene_len series containing the gene sizes for all elements of dataframe

\[RPKM =\frac {10^{9} \cdot C} {N \cdot L}\]

 mgkit.db package

mgkit.db package

Submodules

	mgkit.db.dbm module

	mgkit.db.mongo module

Module contents

 mgkit.db.dbm module

mgkit.db.dbm module

New in version 0.2.1.

This module contains functions and classes to use for a dbm like representation
of annotations using the semidbm package

	
class mgkit.db.dbm.GFFDB(db=None)

	Bases: future.types.newobject.newobject

New in version 0.2.1.

A wrapper for a semidbm instance, used to convert the GFF line stored in
the DB into an mgkit.io.gff.Annotation instance. If a string is
passed to the init method, a DB will be opened with the c flag.

The object behaves like a dictionary, wrapping the access to annoations
using a uid as key and converting the line into an
mgkit.io.gff.Annotation instance.

	
db = None

	

	
items()

	

	
iteritems()

	

	
itervalues()

	

	
values()

	

	
mgkit.db.dbm.create_gff_dbm(annotations, file_name)

	
New in version 0.2.1.

Creates a semidbm database, using an annotation uid as key and the gff
line as value. The object is synced before being returned.

Note

A GFF line is used instead of a json representation because it was
more compact when semidbm was tested.

	Parameters

	
	annotations (iterable) – iterable of annotations

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – database file name, opened with the c flag.

	Returns

	a semidbm database object

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

 mgkit.db.mongo module

mgkit.db.mongo module

New in version 0.2.1.

This module contains functions and classes to use for a DB like representation
of annotations using the pymongo package, a driver to MongoDB.

In a MongoDB document, exported from an annotation, using the
mgkit.io.gff.Annotation.to_mongodb() method, the keys that are defined
are:

seq_id, source, feat_type, start, end, score, strand,
phase, gene_id, taxon_id, bitscore, exp_nonsyn, exp_syn,
length, dbq, coverage, map

These are defined because they have values that are not strings (defined as
properties in mgkit.io.gff.Annotation. The rest of the attributes
defined are kept as well, but no ckeck for the data type is made.

Note

lineage is added as a key, whose values are taxon_id, if a function has
been passed to mgkit.io.gff.Annotation.to_mongodb()

The exception is the map key in the document. It store both the EC mappings
(EC attribute in the GFF), as well as all mappings whose attribute starts with
map_. The former is usually accessed from
mgkit.io.gff.Annotation.get_ec() while the latter from
mgkit.io.gff.Annotation.get_mapping() or
mgkit.io.gff.Annotation.get_mappings().

These 3 methods return a list and this list is used in the MongoDB document.
The MongoDB document will contain a map key where the values are the type
of mappings, and the values the list of IDs the annoation maps to.

Example for the map dictionary

	Type

	GFF

	Annotation

	MongoDB Document

	MongoDB Query

	EC

	EC

	get_ec

	ec

	map.ec

	KO

	map_KO

	get_mapping(‘ko’)

	ko

	map.ko

	eggNOG

	map_EGGNOG

	get_mapping(‘eggnog’)

	eggnog

	map.eggnog

	
class mgkit.db.mongo.GFFDB(db, collection, uri=None, timeout=5)

	Bases: future.types.newobject.newobject

Changed in version 0.3.4: added timeout parameter

Wrapper to a MongoDB connection/db. It is used to automate the convertion
of MongoDB records into mgkit.io.gff.Annotation instances.

	
__getitem__(uid)

	
New in version 0.3.1.

Retrieves an annotation from the DB by its uid

	
__iter__()

	
New in version 0.3.1.

Iterates over all annotations

	
conn = None

	

	
convert_record(record)

	
Changed in version 0.3.1: removes lineage from the attributes

Converts the record (a dictionary instance) to an Annotation

	
cursor(query=None)

	Returns a cursor for the query

	
db = None

	

	
find_annotation(query=None)

	Iterate over a cursor created using query and yields each record
after converting it to a mgkit.io.gff.Annotation instance,
using mgkit.db.mongo.GFFDB.convert_record().

	
insert_many(annotations)

	
New in version 0.3.4.

Inserts annotations into the DB

Warning

The object must be a mgkit.io.gff.Annotation

	
insert_one(annotation)

	
New in version 0.3.4.

Inserts an annotation into the DB

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the passed object is not an annotation

	
items()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection, yielding a
tuple (annotation.uid, annotation)

	
iteritems()

	
New in version 0.3.1.

Alias for GFFDB.items()

	
itervalues()

	
New in version 0.3.1.

Alias for GFFDB.values()

	
keys()

	
New in version 0.3.1.

Iterates over all the uid in the db/collection

	
values()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection

 mgkit.filter package

mgkit.filter package

Submodules

	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

Module contents

Package used to store filter functions (unless specific to a package)

 mgkit.filter.common module

mgkit.filter.common module

Common consts/data for package filter

	
exception mgkit.filter.common.FilterFails

	Bases: exceptions.Exception

Raised if a filter fails

 mgkit.filter.gff module

mgkit.filter.gff module

GFF filtering

	
mgkit.filter.gff.choose_annotation(ann1, ann2, overlap=100, choose_func=None)

	
New in version 0.1.12.

Given two mgkit.io.gff.Annotation, if one of of the two
annotations either is contained in the other or they overlap for at least a
overlap number of bases, choose_func will be applied to both. The
result of choose_func is the the annotation to be discarderd. It returns
None if the annotations should be both kept.

	No checks are made to ensure that the two annotations are on the same

	sequence and strand, as the intersect method of
mgkit.io.gff.Annotation takes care of them.

	Parameters

	
	ann1 – instance of mgkit.io.gff.Annotation

	ann2 – instance of mgkit.io.gff.Annotation

	overlap (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – number of bases overlap that trigger the
filtering

	choose_func (None [https://docs.python.org/3/library/constants.html#None], func) – function that accepts ann1 and ann2 and
return the one to be discarded or None if both are accepted

	Returns

	returns either the mgkit.io.gff.Annotation
to be discarded or None, which is the result of choose_func

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], Annotation)

Note

If choose_func is None, the default function is used:

lambda a1, a2: min(a1, a2, key=lambda el: (el.dbq, el.bitscore,
 len(el)))

In order of importance the db quality, the bitscore and the length. The
annotation with the lowest tuple value is the one to discard.

	
mgkit.filter.gff.filter_annotations(annotations, choose_func=None, sort_func=None, reverse=True)

	
New in version 0.1.12.

Filter an iterable of mgkit.io.gff.Annotation instances sorted
using sort_func as key in sorted and if the order is to be reverse;
it then applies choose_func on all possible pair combinations, using
itertools.combinations.

By default choose_func is choose_annotation() with the default
values, the list of annotation is sorted by bitscore, from the highest to
the lowest value.

	Parameters

	
	annotations (iterable) – iterable of mgkit.io.gff.Annotation
instances

	choose_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function used to select the losing
annotation; if None, it will be choose_annotation() with
default values

	sort_func (func, None [https://docs.python.org/3/library/constants.html#None]) – by default the sorting key is the bitscore of
the annotations

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – passed to sorted, by default is reversed

	Returns

	a set with the annotations that pass the filtering

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.filter.gff.filter_attr_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attr dictionary contains a key whose value is
greater than or equal, or lower than or equal, for the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal or greater than and if
False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_num_s(annotation, attr=None, value=None, greater=True)

	
New in version 0.3.1.

Checks if an annotation attr dictionary contains a key whose value is
greater or lower than the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be greater than and if
False lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_str(annotation, attr=None, value=None, equal=True)

	Checks if an annotation attr dictionary contains a key shose value is
equal to, or contains the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal and if False equal value
must be contained

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base(annotation, attr=None, value=None)

	Checks if an annotation attribute is equal to the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value – the value that the attribute should be equal to

	Returns

	True if the supplied value is equal to the attribute ot False
otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attribute is greater, equal of lower than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the attribute value must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_len(annotation, value=None, greater=True)

	Checks if an annotation length is longer, equal of shorter than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	value (int [https://docs.python.org/3/library/functions.html#int]) – the length to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotation length must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 mgkit.filter.lists module

mgkit.filter.lists module

Module used to filter lists

	
mgkit.filter.lists.aggr_filtered_list(val_list, aggr_func=<function mean>, filt_func=<function <lambda>>)

	Aggregate a list of values using ‘aggr_func’ on a list that passed the
filtering in ‘filt_func’.

‘filt_func’ is a function that returns True or False for each value in
val_list. If the return value is True, the element is included in the
values passed to ‘aggr_func’. Internally a list comprehension is used and
the result passed to ‘aggr_func’

	Parameters

	
	val_list (iterable) – list of values

	aggr_func (func) – function used to aggregate the list values

	filt_func (func) – function the return True or False

	Returns

	the result of the applied ‘aggr_func’

 mgkit.filter.reads module

mgkit.filter.reads module

Some test functions to filter sequences

	
mgkit.filter.reads.expected_error_rate(qualities)

	Calculate the expected error rate for an array of qualities (converted to
probabilities).

	
mgkit.filter.reads.trim_by_ee(qualities, min_length=50, threshold=0.5, chars=True, base=33)

	Trim a sequence based on the expected error rate.

 mgkit.filter.taxon module

mgkit.filter.taxon module

New in version 0.1.9.

Taxa filtering functions

	
mgkit.filter.taxon.filter_by_ancestor(taxon_id, filter_list=None, exclude=False, taxonomy=None)

	
New in version 0.1.13.

Convenience function for filter_taxon_by_id_list(), as explained in
the latter example.

	
mgkit.filter.taxon.filter_taxon_by_id_list(taxon_id, filter_list=None, exclude=False, func=None)

	Filter a taxon_id against a list of taxon ids. Returns True if the
conditions of the filter are met.

If func is not None, a function that accepts two values is expected,
it should be either a partial is_ancestor which only accepts taxon_id and
anc_id or another function that behaves the same way.

Note

if func is None, a simple lambda is used to test identity:

func = lambda t_id, a_id: t_id == a_id

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – the taxon id to filter

	filter_list (iterable) – an iterable with taxon ids

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed (i.e. included if NOT found)

	func (func or None [https://docs.python.org/3/library/constants.html#None]) – a function that accepts taxon_id and an anc_id
and returns a bool to indicated if anc_id is ancestor of taxon_id.
Equivalent to is_ancestor().

	Returns

	True if the taxon_id is in the filter list (or a descendant of it)
False if it’s not found. Exclude equal to True reverse the result.

	Found

	Exclude

	Return Value

	Yes

	False

	True

	No

	False

	False

	Yes

	True

	False

	No

	True

	True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Example

If using func and assuming that taxonomy is an instance of
Taxonomy with data loaded:

>>> import functools
>>> import mgkit.taxon
>>> func = functools.partial(mgkit.taxon.is_ancestor, taxonomy)
>>> filter_taxon_by_id_list(1200582, [838], func=func)
True

 mgkit.io package

mgkit.io package

Submodules

	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

Module contents

Package used to contain code related to I/O operations

 mgkit.io.blast module

mgkit.io.blast module

Blast routines and parsers

	
mgkit.io.blast.add_blast_result_to_annotation(annotation, gi_taxa_dict, taxonomy, threshold=60)

	
Deprecated since version 0.4.0.

Adds blast information to a GFF annotation.

	Parameters

	
	annotation – GFF annotation object

	gi_taxa_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary returned by
parse_gi_taxa_table().

	taxonomy – Uniprot taxonomy, used to add the taxon name to the
annotation

	
mgkit.io.blast.parse_accession_taxa_table(file_handle, acc_ids=None, key=1, value=2, num_lines=1000000, no_zero=True)

	
New in version 0.2.5.

Changed in version 0.3.0: added no_zero

This function superseeds parse_gi_taxa_table(), since NCBI is
deprecating the GIDs in favor of accessions like X53318. The new file can
be found at the NCBI ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid,
for DNA sequences (nt DB) nucl_gb.accession2taxid.gz.

The file contains 4 columns, the first one is the accession without its
version, the second one includes the version, the third column is the
taxonomic identifier and the fourth is either the old GID or na.

The column used as key is the second, since by default the fasta headers
used in NCBI DBs use the versioned identifier. To use the GID as key, the
key parameter can be set to 3, but if no identifier is found (na as per
the file README), the line is skipped.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	acc_ids (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – if it’s not None only the keys included in the
passed acc_ids list will be returned

	key (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the column to use as accession. Defaults
to the versioned accession that is used in GenBank fasta files.

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	no_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True (default) a key with taxon_id of 0 is not yield

Note

GIDs are being phased out in September 2016:
http://www.ncbi.nlm.nih.gov/news/03-02-2016-phase-out-of-GI-numbers/

	
mgkit.io.blast.parse_blast_tab(file_handle, seq_id=0, ret_col=(0, 1, 2, 6, 7, 11), key_func=None, value_funcs=None)

	
New in version 0.1.12.

Parses blast output tab format, returning for each line a key (the query
id) and the columns requested in a tuple.

	Parameters

	
	file_handle (file) – file name or file handle for the blast ouput

	seq_id (int [https://docs.python.org/3/library/functions.html#int]) – index for the column which has the query id

	ret_col (list [https://docs.python.org/3/library/stdtypes.html#list], None [https://docs.python.org/3/library/constants.html#None]) – list of indexes for the columns to be returned or
None if all columns must be returned

	key_func (None [https://docs.python.org/3/library/constants.html#None], func) – function to transform the query id value in the
key returned. If None, the query id is used

	value_funcs (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – list of functions to transform the value of
all the requested columns. If None the values are not converted

	Yields

	tuple – iterator of tuples with the first element being the query id
after key_func is applied, if requested and the second element of
the tuple is a tuple with the requested columns ret_col

BLAST+ used with -outfmt 6, default columns

	column index

	description

	0

	query name

	1

	subject name

	2

	percent identities

	3

	aligned length

	4

	number of mismatched positions

	5

	number of gap positions

	6

	query sequence start

	7

	query sequence end

	8

	subject sequence start

	9

	subject sequence end

	10

	e-value

	11

	bit score

	
mgkit.io.blast.parse_fragment_blast(file_handle, bitscore=40.0)

	
New in version 0.1.13.

Parse the output of a BLAST output where the sequences are the single
annotations, so the sequence names are the uid of the annotations.

The only returned values are the best hits, maxed by bitscore and identity.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (float [https://docs.python.org/3/library/functions.html#float]) – minimum bitscore for accepting a hit

	Yields

	tuple – a tuple whose first element is the uid (the sequence name) and
the second is the a list of tuples whose first element is the GID (NCBI
identifier), the second one is the identity and the third is the
bitscore of the hit.

	
mgkit.io.blast.parse_uniprot_blast(file_handle, bitscore=40, db='UNIPROT-SP', dbq=10, name_func=None, feat_type='CDS', seq_lengths=None)

	
New in version 0.1.12.

Changed in version 0.1.13: added name_func argument

Changed in version 0.2.1: added feat_type

Changed in version 0.2.3: added seq_lengths and added subject start and end and e-value

Parses BLAST results in tabular format using parse_blast_tab(),
applying a basic bitscore filter. Returns the annotations associated with
each BLAST hit.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – the minimum bitscore for an annotation to be
accepted

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database used

	dbq (int [https://docs.python.org/3/library/functions.html#int]) – an index indicating the quality of the sequence database
used; this value is used in the filtering of annotations

	name_func (func) – function to convert the name of the database
sequences. Defaults to lambda x: x.split(‘|’)[1], which can be
be used with fasta files provided by Uniprot

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_lengths (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences lengths, used to
deduct the frame of the ‘-‘ strand

	Yields

	Annotation – instances of mgkit.io.gff.Annotation instance of
each BLAST hit.

 mgkit.io.fasta module

mgkit.io.fasta module

Simple fasta parser and a few utility functions

	
mgkit.io.fasta.load_fasta(file_handle)

	
Changed in version 0.1.13: now returns uppercase sequences

Loads a fasta file and returns a generator of tuples in which the first
element is the name of the sequence and the second the sequence

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fasta file to open; a file name or a file handle
is expected

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence

	
mgkit.io.fasta.load_fasta_files(files)

	
New in version 0.3.4.

Loads all fasta files from a list or iterable

	
mgkit.io.fasta.load_fasta_prodigal(file_handle)

	
New in version 0.3.1.

Reads a Prodigal aminoacid fasta file and yields a dictionary with
basic information about the sequences.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – passed to load_fasta()

	Yields

	dict – dictionary with the information contained in the header, the last
of the attributes put into key attr, while the rest are transformed
to other keys: seq_id, seq, start, end (genomic), strand, ordinal of

	
mgkit.io.fasta.load_fasta_rename(file_handle, name_func=None)

	
New in version 0.3.1.

Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fasta.split_fasta_file(file_handle, name_mask, num_files)

	
New in version 0.1.13.

Splits a fasta file into a series of smaller files.

	Parameters

	
	file_handle (file, str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file with the input sequences

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name template for the splitted files, more
informations are found in mgkit.io.split_write()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – number of files in which to distribute the sequences

	
mgkit.io.fasta.write_fasta_sequence(file_handle, name, seq, wrap=60, write_mode='a')

	Write a fasta sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	wrap (int [https://docs.python.org/3/library/functions.html#int]) – int for the line wrapping. If None, the sequence will be
written in a single line

 mgkit.io.fastq module

mgkit.io.fastq module

Fastq utility functions

	
mgkit.io.fastq.check_fastq_type(qualities)

	Trys to guess the type of quality string used in a Fastq file

	Parameters

	qualities (str [https://docs.python.org/3/library/stdtypes.html#str]) – string with the quality scores as in the Fastq file

	Return str

	a string with the guessed quality score

Note

Possible values are the following, classified but the values usually
used in other softwares:

	ASCII33: sanger, illumina-1.8

	ASCII64: illumina-1.3, illumina-1.5, solexa-old

	
mgkit.io.fastq.choose_header_type(seq_id)

	Return the guessed compiled regular expression
:param str seq_id: sequence header to test

	Returns

	compiled regular expression object or None if no match found

	
mgkit.io.fastq.convert_seqid_to_new(seq_id)

	Convert old seq_id format for Illumina reads to the new found in Casava
1.8+

	Parameters

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	Return str

	the new format seq_id

Note

Example from Wikipedia:

old casava seq_id:
@HWUSI-EAS100R:6:73:941:1973#0/1
new casava seq_id:
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCAC

	
mgkit.io.fastq.convert_seqid_to_old(seq_id, index_as_seq=True)

	
Deprecated since version 0.3.3.

Convert old seq_id format for Illumina reads to the new found in Casava
until 1.8, which marks the new format.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	index_as_seq (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the index for the multiplex we’ll be
the sequence found at the end of the new format seq_id. Otherwise, 0
we’ll be used

	Return str

	the new format seq_id

	
mgkit.io.fastq.load_fastq(file_handle, num_qual=False)

	
New in version 0.3.1.

Loads a fastq file and returns a generator of tuples in which the first
element is the name of the sequence, the second the sequence and the third
the quality scores (converted in a numpy array if num_qual is True).

Note

this is a simple parser that assumes each sequence is on 4 lines,
1st and 3rd for the headers, 2nd for the sequence and 4th the quality
scores

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fastq file to open, can be a file name or a
file handle

	num_qual (bool [https://docs.python.org/3/library/functions.html#bool]) – if False (default), the quality score will be
returned as ASCII character, if True a numpy array.

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence, the third is the quality score. The quality scores are
kept as a string if num_qual is False (default) and converted to a
numpy array with correct values (0-41) if num_qual is True

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the headers in both sequence and quality scores are not

	valid. This implies that the sequence/qualities have carriage returns

	or the file is truncated.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the qualities are in a format different than sanger

	(min 0, max 40) or illumina-1.8 (0, 41)

	
mgkit.io.fastq.load_fastq_rename(file_handle, num_qual=False, name_func=None)

	
New in version 0.3.3.

Mirrors the same functionality in mgkit.io.fasta.load_fasta_rename().
Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fastq.write_fastq_sequence(file_handle, name, seq, qual, write_mode='a')

	
Changed in version 0.3.3: if qual is not a string it’s converted to chars (phred33)

Write a fastq sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	qual (str [https://docs.python.org/3/library/stdtypes.html#str]) – quality string

 mgkit.io.gff module

mgkit.io.gff module

This modules define classes and function related to manipulation of GFF/GTF
files.

	
class mgkit.io.gff.Annotation(seq_id='None', start=1, end=1, strand='+', source='None', feat_type='None', score=0.0, phase=0, uid=None, **kwd)

	Bases: mgkit.io.gff.GenomicRange

New in version 0.1.12.

Changed in version 0.2.1: using __slots__ for better memory usage

Alternative implementation for an Annotation. When initialised, If uid is
None, a unique id is added using uuid.uuid4.

	
add_exp_syn_count(seq, syn_matrix=None)

	
New in version 0.1.13.

Adds expected synonymous/non-synonymous values for an annotation.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence corresponding to the annotation seq_id
syn_matrix (None, dict): matrix that determines the return
values. Defaults to the one defined in the called function
mgkit.utils.sequnce.get_seq_expected_syn_count().

	
add_gc_content(seq)

	Adds GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
add_gc_ratio(seq)

	Adds GC content information for an annotation. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
attr

	

	
bitscore

	bitscore of the annotation

	
counts

	
New in version 0.2.2.

Returns the sample counts for the annotation

	
coverage

	
New in version 0.1.13.

Return the total coverage for the annotation

	Return float

	coverage

	Raises

	AttributeNotFound – if no coverage attribute is found

	
db

	db used for the gene_id prediction

	
dbq

	db quality of the annotation

	
exp_nonsyn

	
New in version 0.1.13.

Returns the expected number of non-synonymous changes

	
exp_syn

	
New in version 0.1.13.

Returns the expected number of synonymous changes

	
feat_type

	

	
fpkms

	
New in version 0.2.2.

Returns the sample fpkms for the annotation

	
gene_id

	gene_id of the annotation, or ko if available

	
get_aa_seq(seq, start=0, tbl=None, snp=None)

	
New in version 0.1.16.

Returns a translated aminoacid sequence of the annotation. The snp
parameter is passed to Annotation.get_nuc_seq()

	Parameters

	
	seq (seq) – chromosome/contig sequence

	start (int [https://docs.python.org/3/library/functions.html#int]) – position (0-based) from where the correct occurs
(frame). If None, the phase attribute is used

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon,
passed to mgkit.utils.sequence.translate_sequence()

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP and the
second element is the change

	Returns

	aminoacid sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_attr(attr, conv=<type 'str'>)

	
Changed in version 0.3.4: any GFF attribute can be returned

Changed in version 0.3.3: added seq_id as special attribute, in addition do length

New in version 0.1.13.

Generic method to get an attribute and convert it to a specific
datatype. The order for the lookup is:

	length

	self.attr (dictionary)

	getattr(self) of the first 8 columns of a GFF (seq_id, source, …)

	
get_ec(level=4)

	
New in version 0.1.13.

Changed in version 0.2.0: returns a set instead of a list

Returns the EC values associated with the annotation, cutting them at
the desired level.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – level of classification desired (between 1 and 4)

	Returns

	list of all EC numbers associated, at the desired level, if
none are found an empty set is returned

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
get_mapping(db)

	
New in version 0.1.13.

Returns the mappings, to a particular db, associated with the
annotation.

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	Returns

	list of all mappings associated, to the specified db, if
none are found an empty list is returned

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_mappings()

	
New in version 0.2.1.

Return a dictionary where the keys are the mapping DBs (lowercase) and
and the values are the mapping IDs for that DB

	
get_nuc_seq(seq, reverse=False, snp=None)

	
New in version 0.1.13.

Changed in version 0.1.16: added snp parameter

Returns the nucleotidic sequence that the annotation covers. if the
annotation’s strand is -, and reverse is True, the reverse
complement is returned.

	Parameters

	
	seq (seq) – chromosome/contig sequence

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the strand is ‘-‘, a reverse complement
is returned

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP relative to
the Annotation and the second element is the change

	Returns

	nucleotide sequence with requested transformations

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_number_of_samples(min_cov=4)

	
New in version 0.1.13.

Returns the number of sample that have at least a minimum coverage of
min_cov.

	Parameters

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage

	Return int

	number of samples passing the filter

	Raises

	AttributeNotFound – if no sample coverage attribute is found

	
is_syn(seq, pos, change, tbl=None, abs_pos=True, start=0)

	
New in version 0.1.16.

Return if a SNP is synonymous or non-synonymous.

	Parameters

	
	seq (seq) – reference sequence of the annotation

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position of the SNP on the reference (1-based index)

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation table. Defaults to the
universal genetic code

	abs_pos (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the pos is referred to the reference and
not a position relative to the annotation

	start (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – phase to be used to get the start position of
the codon. if None, the Annotation phase will be used

	Returns

	True if the SNP is synonymous, false if it’s non-synonymous

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
length

	
Changed in version 0.2.0.

Length of the annotation, uses len(self)

	
phase

	

	
region

	
New in version 0.1.13.

Return the region covered by the annotation, to use in samtools

	
sample_coverage

	
New in version 0.1.13.

Returns a dictionary with the coverage for each sample, the returned
dictionary has the sample id (stripped of the _cov) suffix and as
values the coverage (converted via int()).

	Return dict

	dictionary with the samples’ coverage

	
score

	

	
set_attr(attr, value)

	
New in version 0.1.13.

Generic method to set an attribute

	
set_mapping(db, values)

	
New in version 0.1.13.

Set mappings to a particular db, associated with the
annotation.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	mappings (iterable) – iterable of mappings

	
source

	

	
taxon_db

	db used for the taxon_id prediction

	
taxon_id

	
Changed in version 0.3.1: if taxon_id is set to “None” as a string, it’s converted to None

taxon_id of the annotation

	
to_dict(exclude_attr=None)

	
New in version 0.3.1.

Return a dictionary representation of the Annotation.

	Parameters

	exclude_attr (str [https://docs.python.org/3/library/stdtypes.html#str],list [https://docs.python.org/3/library/stdtypes.html#list]) – attributes to exclude from the dictionary,
can be either a single attribute (string) or a list of strings

	Returns

	dictionary with the annotation

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
to_file(file_handle)

	Writes the GFF annotation to file_handle

	
to_gff(sep='=')

	Format the Annotation as a GFF string.

	Parameters

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator key -> value

	Returns

	annotation formatted as GFF

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
to_gtf(gene_id_attr='uid', sep=' ')

	
New in version 0.1.15.

Changed in version 0.1.16: added gene_id_attr parameter

Changed in version 0.2.2: added sep argument, default to a space, now

Simple conversion to a valid GTF. gene_id and transcript_id are set to
uid or the attribute specified using the gene_id_attr parameter.
It’s written to be used with SNPDat.

	
to_json()

	
New in version 0.2.1.

Changed in version 0.3.1: now Annotation.to_dict() is used

Returns a json representation of the Annotation

	
to_mongodb(lineage_func=None, indent=None, raw=False)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: added indent parameter

Changed in version 0.3.4: added raw

Returns a MongoDB document that represent the Annotation.

	Parameters

	
	lineage (func) – function used to populate the lineage key, returns
a list of taxon_id

	indent (int [https://docs.python.org/3/library/functions.html#int]) – the amount of indent to put in the record, None (the
default) is for the most compact - one line for the record

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the method returns a string, which is the
json dump, if False, the value returned is the dictionary

	Returns

	the MongoDB document, with Annotation.uid as _id, as
a string if raw is True, a dictionary if it is False

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
uid

	
New in version 0.1.13.

uid of the annotation

	
exception mgkit.io.gff.AttributeNotFound

	Bases: exceptions.Exception

Raised if an attribute is not found in a GFF file

	
exception mgkit.io.gff.DuplicateKeyError

	Bases: exceptions.Exception

New in version 0.1.12.

Raised if a GFF annotation contains duplicate keys

	
class mgkit.io.gff.GenomicRange(seq_id='None', start=1, end=1, strand='+')

	Bases: future.types.newobject.newobject

Defines a genomic range

Changed in version 0.2.1: using __slots__ for better memory usage

	
__contains__(pos)

	
Changed in version 0.2.3: a range or a subclass are accepted

New in version 0.1.16.

Tests if the position is inside the range of the GenomicRange

Pos is 1-based as GenomicRange.start and
GenomicRange.end

	
end

	

	
expand_from_list(others)

	Expand the GenomicRange range instance with a list of
GenomicRange

	Parameters

	others (iterable) – iterable of GenomicRange

	
get_range()

	
New in version 0.1.13.

Returns the start and end position as a tuple

	
get_relative_pos(pos)

	
New in version 0.1.16.

Given an absolute position (referred to the reference), convert the
position to a coordinate relative to the GenomicRange

	Returns

	the position relative to the GenomicRange

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the position is not in the range

	
intersect(other)

	Return an instance of GenomicRange that represent the
intersection of the current instance and another.

	
seq_id

	

	
start

	

	
strand

	

	
union(other)

	Return the union of two GenomicRange

	
mgkit.io.gff.annotate_sequence(name, seq, window=None)

	

	
mgkit.io.gff.annotation_coverage(annotations, seqs, strand=True)

	
New in version 0.1.12.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the key, (seq_id, strand) if strand is
True or seq_id if strand is False, and the coverage is the second
value.

	
mgkit.io.gff.annotation_coverage_sorted(annotations, seqs, strand=True)

	
New in version 0.3.1.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

Note

It differs from annotation_coverage() because it assumes the
annotations are correctly sorted and in the values yielded

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the seq_id, the second the strand (if
strand is True, else it’s set to None), and the third element is the
coverage.

	
mgkit.io.gff.annotation_elongation(ann1, annotations)

	
New in version 0.1.12.

Given an Annotation instance and a list of the instances of the
same class, returns the longest overlapping range that can be found and the
annotations that are included in it.

Warning

annotations are not checked for seq_id and strand

	Parameters

	
	ann1 (Annotation) – annotation to elongate

	annotations (iterable) – iterable of Annotation instances

	Returns

	the first element is the longest range found, while the the
second element is a set with the annotations used

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.io.gff.convert_gff_to_gtf(file_in, file_out, gene_id_attr='uid')

	
New in version 0.1.16.

Function that uses Annotation.to_gtf() to convert a GFF into GTF.

	Parameters

	
	file_in (str [https://docs.python.org/3/library/stdtypes.html#str], file) – either file name or file handle of a GFF file

	file_out (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name to which write the converted annotations

	
mgkit.io.gff.diff_gff(files, key_func=None)

	
New in version 0.1.12.

Returns a simple diff made between a list of gff files. The annotations are
grouped using key_func, so it depends on it to find similar annotations.

	Parameters

	
	files (iterable) – an iterable of file handles, pointing to GFF files

	key_func (func) – function used to group annotations, defaults to this
key: (x.seq_id, x.strand, x.start, x.end, x.gene_id, x.bitscore)

	Returns

	the returned dictionary keys are determined by key_func and as
values lists. The lists elements are tuple whose first element is the
index of the file, relative to files and the second element is the
line number in which the annotation is. Can be used with the
linecache [https://docs.python.org/3/library/linecache.html#module-linecache] module.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.elongate_annotations(annotations)

	
New in version 0.1.12.

Given an iterable of Annotation instances, tries to find the all
possible longest ranges and returns them.

Warning

annotations are not checked for seq_id and strand

	Parameters

	annotations (iterable) – iterable of Annotation instances

	Returns

	set with the all ranges found

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.io.gff.extract_nuc_seqs(annotations, seqs, name_func=<function <lambda>>, reverse=False)

	
New in version 0.1.13.

Extract the nucleotidic sequences from a list of annotations. Internally
uses the method Annotation.get_nuc_seq().

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences referenced in the
annotations

	name_func (func) – function used to extract the sequence name to be
used, defaults to the uid of the annotation

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotations on the - strand are reverse
complemented

	Yields

	tuple – tuple whose first element is the sequence name and the second is
the sequence to which the annotation refers.

	
mgkit.io.gff.from_aa_blast_frag(hit, parent_ann, aa_seqs)

	

	
mgkit.io.gff.from_gff(line, strict=True, encoding='ascii')

	
New in version 0.1.12.

Changed in version 0.2.6: added strict parameter

Changed in version 0.4.0: added encoding parameter

Parse GFF line and returns an Annotation instance

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – GFF line

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Returns

	instance of Annotation for the line

	Return type

	Annotation

	Raises

	DuplicateKeyError – if the attribute column has duplicate keys

	
mgkit.io.gff.from_glimmer3(header, line, feat_type='CDS')

	
New in version 0.1.12.

Parses the line of a GLIMMER3 ouput and returns an instance of a GFF
annotation.

	Parameters

	
	header (str [https://docs.python.org/3/library/stdtypes.html#str]) – the seq_id to which the ORF belongs

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – the prediction line for the orf

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the feature type to use

	Returns

	instance of annotation

	Return type

	Annotation

Example

Assuming a GLIMMER3 output like this:

>sequence0001
orf00001 66 611 +3 6.08

The code used is:

>>> header = 'sequence0001'
>>> line = 'orf00001 66 611 +3 6.08'
>>> from_glimmer3(header, line)

	
mgkit.io.gff.from_hmmer(line, aa_seqs, feat_type='gene', source='HMMER', db='CUSTOM', custom_profiles=True, noframe=False)

	
New in version 0.1.15: first implementation to move old scripts to new GFF specs

Changed in version 0.2.1: removed compatibility with old scripts

Changed in version 0.2.2: taxon_id and taxon_name are not saved for non-custom profiles

Changed in version 0.3.1: added support for non mgkit-translated sequences (noframe)

Parse HMMER results (one line), it won’t parse commented lines (starting
with #)

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMMER domain table line

	aa_seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with amino-acid sequences (name->seq),
used to get the correct nucleotide positions

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘feature type’ column

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘source’ column

	custom_profiles (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the profile name contains gene,
taxonomy and reviewed information in the form
KOID_TAXONID_TAXON-NAME(-nr)

	noframe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the sequence is assumed to be in frame f0

	Returns

	A Annotation instance

Note

if custom_profiles is False, gene_id, taxon_id and taxon_name will
be equal to the profile name

	
mgkit.io.gff.from_json(line)

	
New in version 0.2.1.

Returns an Annotation from a json representation

	
mgkit.io.gff.from_mongodb(record, lineage=True)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: better handling of missing attributes and added lineage parameter

Returns a Annotation instance from a MongoDB record (created)
using Annotation.to_mongodb(). The actual record returned by pymongo
is a dictionary that is copied, manipulated and passed to the
Annotation.__init__().

	Parameters

	
	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary with the full record from a MongoDB query

	lineage (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates if the lineage information in the record
should be kept in the annotation

	Returns

	instance of Annotation object

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast(hit, db, feat_type='CDS', seq_len=None, to_nuc=False, **kwd)

	
New in version 0.1.12.

Changed in version 0.1.16: added to_nuc parameter

Changed in version 0.2.3: removed to_nuc, the hit can include the subject end/start and evalue

Returns an instance of Annotation

	Parameters

	
	hit (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a BLAST hit, from mgkit.io.blast.parse_blast_tab()

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db used with BLAST

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – sequence length, if supplied, the phase for strand ‘-‘
can be assigned, otherwise is assigned a 0

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast_frag(hit, parent_ann, db='NCBI-NT')

	

	
mgkit.io.gff.from_prodigal_frag(main_gff, blast_gff, attr='ID', split_func=None)

	
Changed in version 0.3.3: fixed a bug for the strand, also the code is tested

New in version 0.2.6: experimental

Reads the GFF given in output by PRODIGAL and the resulting GFF from using
BLAST (or other software) on the aa or nucleotide file output by PRODIGAL.

It then integrates the two outputs, so to the PRODIGAL GFF is added the
information from the the output of the gene prediction software used.

	Parameters

	
	main_gff (file) – GFF file from PRODIGAL

	blast_gff (file) – GFF with the returned annotations

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute in the PRODIGAL GFF that is used to identify an
annotation

	split_func (func) – function to rename the headers from the predicted
sequences back to their parent sequence

	Yields

	annotation – annotation for each blast_gff back translated

	
mgkit.io.gff.from_sequence(name, seq, feat_type='SEQUENCE', **kwd)

	
New in version 0.1.12.

Returns an instance of Annotation for the full length of a
sequence

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence, to get the length of the annotation

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.get_annotation_map(annotations, key_func, value_func)

	
New in version 0.1.15.

Applies two functions to an iterable of annotations with an iterator
returned with the applied functions. Useful to build a dictionary

	Parameters

	
	annotations (iterable) – iterable of annotations

	key_func (func) – function that accept an annotation as argument and
returns one value, the first of the returned tuple

	value_func (func) – function that accept an annotation as argument and
returns one value, the second of the returned tuple

	Yields

	tuple – a tuple where the first value is the result of key_func on
the passed annotation and the second is the value returned by
value_func on the same annotation

	
mgkit.io.gff.group_annotations(annotations, key_func=<function <lambda>>)

	
New in version 0.1.12.

Group Annotation instances in a dictionary by using a key function
that returns the key to be used in the dictionary.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Returns

	dictionary whose keys are returned by key_func and the values
are lists of annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

>>> ann = [Annotation(seq_id='seq1', strand='+', start=10, end=15),
... Annotation(seq_id='seq1', strand='+', start=1, end=5),
... Annotation(seq_id='seq1', strand='-', start=30, end=100)]
>>> group_annotations(ann)
{('seq1', '+'): [seq1(+):10-15, seq1(+):1-5], ('seq1', '-'): [seq1(-):30-100]}

	
mgkit.io.gff.group_annotations_by_ancestor(annotations, ancestors, taxonomy)

	
New in version 0.1.13.

Group annotations by the ancestors provided.

	Parameters

	
	annotations (iterable) – annotations to group

	ancestors (iterable) – list of ancestors accepted

	taxonomy – taxonomy class

	Returns

	grouped annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.group_annotations_sorted(annotations, key_func=<function <lambda>>)

	
New in version 0.1.13.

Group Annotation instances by using a key function that returns a
key. Assumes that the annotations are already sorted to return an iterator
and save memory. One way to sort them is using: sort -s -k 1,1 -k 7,7 on
the file.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Yields

	list – a list of the grouped annotations by key_func values

	
mgkit.io.gff.load_gff_base_info(files, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.uid and the value
is a tuple (Annotation.gene_id, Annotation.taxon_id)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.load_gff_mappings(files, map_db, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	map_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – any kind mapping in the GFF, as passed to
Annotation.get_mapping()

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.gene_id and the
value is a list of mappings, as returned by
Annotation.get_mapping()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.parse_gff(file_handle, gff_type=<function from_gff>, strict=True, encoding='ascii')

	
Changed in version 0.4.0: In some cases ASCII decoding is not enough, so it is parametrised now

Changed in version 0.3.4: added decoding from binary for compatibility with Python3

Changed in version 0.2.6: added strict parameter

Changed in version 0.2.3: correctly handling of GFF with comments of appended sequences

Changed in version 0.1.12: added gff_type parameter

Parse a GFF file and returns generator of GFFKegg instances

Accepts a file handle or a string with the file name

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	gff_type (class) – class/function used to parse a GFF annotation

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – encoding of the file, if ascii fails, use utf8

	Yields

	Annotation – an iterator of Annotation instances

	
mgkit.io.gff.parse_gff_files(files, strict=True)

	
New in version 0.1.15.

Changed in version 0.2.6: added strict parameter

Function that returns an iterator of annotations from multiple GFF files.

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – iterable of file names of GFF files, or a single
file name

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Yields

	Annotation – iterator of annotations

	
mgkit.io.gff.split_gff_file(file_handle, name_mask, num_files=2, encoding='ascii')

	
New in version 0.1.14.

Changed in version 0.2.6: now accept a file object as sole input

Changed in version 0.4.0: added encoding parameter

Splits a GFF, or a list of them, into a number of files. It is assured that
annotations for the same sequence are kept in the same file, which is
useful for cases like filtering, even when the annotations are from
different GFF files.

Internally, a structure is kept to check if a sequence ID is already been
stored to a file, in which case the annotation is written to that file,
otherwise a random file handles (among the open ones) is chosen.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) – a single or list of file handles (or file
names), from which the GFF annotations are read

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

Example

>>> import glob
>>> files = glob.glob('*.gff')
>>> name_mask = 'split-file-{0}.gff'
>>> split_gff_file(files, name_mask, 5)

	
mgkit.io.gff.write_gff(annotations, file_handle, verbose=True)

	
Changed in version 0.1.12: added verbose argument

Write a GFF to file

	Parameters

	
	annotations (iterable) – iterable that returns GFFKegg
or Annotation instances

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to write to

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a message is logged

 mgkit.io.glimmer module

mgkit.io.glimmer module

	
mgkit.io.glimmer.parse_glimmer3(file_handle)

	Parses an ouput file from glimmer3 and yields the header and prediction
lines. Used to feed the mgkit.io.gff.from_glimmer3() function.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	Yields

	tuple – first element is the sequence of the predicted gene and the
second is the prediction line

 mgkit.io.snpdat module

mgkit.io.snpdat module

SNPDat reader

	
class mgkit.io.snpdat.SNPDatRow(line=None, rev_comp=None)

	Bases: future.types.newobject.newobject

Class containing information ouputted by SNPDat in its result file. One
instance contains information about a row in the file.

	
chr_name

	the queried SNPs chromosome ID

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
chr_pos

	queried SNPs genomic location

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
in_feat

	Whether or not the queried SNP was within a feature

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
region

	Region containing the SNP; either exonic, intronic or
intergenic

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
feat_dist

	Distance to nearest feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feature

	Either the closest feature to the SNP or the feature
containing the SNP

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_features

	number of different features that the SNP is
annotated to

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_num

	number of annotations of the current feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_start

	Start of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_end

	End of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
gene_id

	gene ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_name

	gene name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_id

	transcript ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_name

	transcript name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exon

	exon that contains the current feature and the total
number of annotated exons for the gene containing the feature

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
strand

	strand sense of the feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ann_frame

	annotated reading frame (when contained in the GTF)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
frame

	reading frame estimated by SNPdat

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_stops

	estimated number of stop codons in the estimated
reading frame

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
codon

	codon containing the SNP, position in the codon and
reference base and mutation

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_change

	amino acid for the reference codon and new
amino acid with the mutation in place

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_ref

	reference nucleotide

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]

	
aa_change

	amino acid for the reference codon and new amino
acid with the mutation in place

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
synonymous

	Whether or not the mutation is synonymous

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
protein_id

	protein ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
messages

	messages in the SNPDat line

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
aa_change

	

	
ann_frame

	

	
chr_name

	

	
chr_pos

	

	
codon

	

	
exon

	

	
feat_dist

	

	
feat_end

	

	
feat_num

	

	
feat_start

	

	
feature

	

	
frame

	

	
gene_id

	

	
gene_name

	

	
in_feat

	

	
messages

	

	
nuc_change

	

	
nuc_ref

	

	
num_features

	

	
num_stops

	

	
protein_id

	

	
region

	

	
strand

	

	
synonymous

	

	
transcript_id

	

	
transcript_name

	

	
mgkit.io.snpdat.snpdat_reader(f_handle)

	Simple SNPDat reader.

f_handle: file handle or string for the SNPDat result file

	Returns

	generator of SNPDatRow instances

 mgkit.io.uniprot module

mgkit.io.uniprot module

New in version 0.1.13.

Uniprot file formats

	
mgkit.io.uniprot.parse_uniprot_mappings(file_handle, gene_ids=None, mappings=None, num_lines=10000000)

	Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator with the mappings.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	Yields

	tuple – the first element is the gene ID, the second is the mapping type
and third element is the mapped ID

	
mgkit.io.uniprot.uniprot_mappings_to_dict(file_handle, gene_ids, mappings, num_lines=None)

	
Changed in version 0.3.4: added num_lines

Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator of dictionaries with the mappings requested.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – passed to parse_uniprot_mappings()

	Yields

	tuple – the first element is the gene ID, the second is a dictionary
with all the mappings found, the key is the mapping type and the value
is a list of all mapped IDs

 mgkit.io.utils module

mgkit.io.utils module

Various utilities to help read and process files

	
exception mgkit.io.utils.UnsupportedFormat

	Bases: exceptions.IOError

Raised if the a file can’t be opened with the correct module

	
mgkit.io.utils.compressed_handle(file_handle)

	
New in version 0.1.13.

Tries to wrap a file handle in the appropriate compressed file class.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle

	Returns

	the same file handle if no suitable compressed file class is
found or the new file_handle which supports the compression

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.group_tuples_by_key(iterator, key_func=None, skip_elements=0)

	
New in version 0.3.1.

Group the elements of an iterator by a key and yields the grouped elements.
The elements yielded by the iterator are assumed to be a list or tuple,
with the default key (when key_func is None) being the first of the of
the objects inside that element. This behaviour can be customised by
passing to key_func a function that accept an element and returns the key
to be used.

Note

the iterable assumen that the elements are already sorted by their keys

	Parameters

	
	iterator (iterable) – iterator to be grouped

	key_func (func) – function that accepts a element and returns its
associated key

	skip_elements (int [https://docs.python.org/3/library/functions.html#int]) – number of elements to skip at the start

	Yields

	list – a list of the grouped elements by key

	
mgkit.io.utils.open_file(file_name, mode='r')

	
New in version 0.1.12.

Changed in version 0.3.4: using io.open, always in binary mode

Opens a file using the extension as a guide to which module to use.

Note

Unicode makes for a slower .translate method in Python2, so it’s
best to use the open builtin.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – mode used to open the file

	Returns

	file handle

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.split_write(records, name_mask, write_func, num_files=2)

	
New in version 0.1.13.

Splits the writing of a number of records in a series of files. The
name_mask is used as template for the file names. A string like
“split-files-{0}” can be specified and the function applies format with the
index of the pieces.

	Parameters

	
	records (iterable) – an iterable that returns a object to be saved

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	write_func (func) – a function that is called to write to the files. It
needs to accept a file handles as first argument and the record
returned by records as the second argument

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

 mgkit.mappings package

mgkit.mappings package

Submodules

	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

Module contents

 mgkit.mappings.cazy module

mgkit.mappings.cazy module

Module containing classes and functions to deal with CaZy data

 mgkit.mappings.eggnog module

mgkit.mappings.eggnog module

Module containing classes and functions to deal with eggNOG data

Todo

	unify download of data from web

	
class mgkit.mappings.eggnog.NOGInfo(members=None, funccat=None, description=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.1.14.

Changed in version 0.4.0: made file reading compatible with Python 3

Mappings from Uniprot to eggNOG

..note:

load_description is optional

	
get_gene_funccat(gene_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG gene ID

	
get_gene_nog(gene_id)

	Returns the COG/NOG ID of the requested eggNOG gene ID

	
get_nog_funccat(nog_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG COG/NOG ID

	
get_nog_gencat(nog_id)

	Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested eggNOG COG/NOG IDs

	
get_nogs_funccat(nog_ids)

	Returns the functional categories for a list of COG/NOG IDs. Uses
NOGInfo.get_nog_funccat()

	
load_description(file_handle)

	Loads data from NOG.description.txt.gz

file_handle can either an open file or a path

	
load_funccat(file_handle)

	Loads data from NOG.funccat.txt.gz

file_handle can either an open file or a path

	
load_members(file_handle)

	Loads data from NOG.members.txt.gz

file_handle can either an open file or a path

	
mgkit.mappings.eggnog.get_general_eggnog_cat(category)

	
New in version 0.1.14.

Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested single letter functional category (EGGNOG_CAT
keys)

 mgkit.mappings.enzyme module

mgkit.mappings.enzyme module

New in version 0.1.14.

EC mappings

	
mgkit.mappings.enzyme.change_mapping_level(ec_map, level=3)

	
New in version 0.1.14.

Given a dictionary, whose values are dictionaries, in which a key is named
ec and its value is an iterable of EC numbers, returns an iterator that
can be used to build a dictionary with the same top level keys and the
values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary generated by
mgkit.net.uniprot.get_gene_info()

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

Example

>>> from mgkit.net.uniprot import get_gene_info
>>> from mgkit.mappings.enzyme import change_mapping_level
>>> ec_map = get_gene_info('Q9HFQ1', columns='ec')
{'Q9HFQ1': {'ec': '1.1.3.4'}}
>>> dict(change_mapping_level(ec_map, level=2))
{'Q9HFQ1': {'1.1'}}

	
mgkit.mappings.enzyme.get_enzyme_full_name(ec_id, ec_names, sep=', ')

	
New in version 0.2.1.

From a EC identifiers and a dictionary of names builds a comma separated
name (by default) that identifies the function of the enzyme.

	Parameters

	
	ec_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – EC identifier

	ec_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of names that can be produced using
parse_expasy_file()

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – string used to join the names

	Returns

	the enzyme classification name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
mgkit.mappings.enzyme.get_enzyme_level(ec, level=4)

	
New in version 0.1.14.

Returns an enzyme class at a specific level , between 1 and 4 (by default
the most specific, 4)

	Parameters

	
	ec (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string representing an EC number (e.g. 1.2.4.10)

	level (int [https://docs.python.org/3/library/functions.html#int]) – from 1 to 4, to get a different level specificity of in
the enzyme classification

	Returns

	the EC number at the requested specificity

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> from mgkit.mappings.enzyme import get_enzyme_level
>>> get_enzyme_level('1.1.3.4', 1)
'1'
>>> get_enzyme_level('1.1.3.4', 2)
'1.1'
>>> get_enzyme_level('1.1.3.4', 3)
'1.1.3'
>>> get_enzyme_level('1.1.3.4', 4)
'1.1.3.4'

	
mgkit.mappings.enzyme.get_mapping_level(ec_map, level=3)

	
New in version 0.3.0.

Given a dictionary, whose values are iterable of EC numbers, returns an
iterator that can be used to build a dictionary with the same top level
keys and the values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary genes to EC

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

	
mgkit.mappings.enzyme.parse_expasy_file(file_name)

	Used to load enzyme descriptions from the file enzclass.txt on
expasy [http://expasy.org].

The FTP url for enzclass.txt is:
ftp://ftp.expasy.org/databases/enzyme/enzclass.txt

 mgkit.mappings.go module

mgkit.mappings.go module

Module containing classes and functions to deal with Gene Ontology data

 mgkit.mappings.pandas_map module

mgkit.mappings.pandas_map module

Module that contains mapping operations on pandas data structures

	
mgkit.mappings.pandas_map.calc_coefficient_of_variation(dataframe)

	Calculate coefficient of variation for a DataFrame. Uses formula from
Wikipedia [http://en.wikipedia.org/wiki/Coefficient_of_variation]

The formula used is \(\left (1 + \frac {1}{4n} \right) * c_{v}\)
where \(c_{v} = \frac {s}{\bar{x}}\)

	
mgkit.mappings.pandas_map.concatenate_and_rename_tables(dataframes, roots)

	Concatenates a list of pandas.DataFrame instances and renames the
columns prepending a string to each column in each table from a list of
prefixes.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of prefixes to append to the column names of
each DataFrame

	Return DataFrame

	returns a DataFrame instance

Todo

	move to pandas_utils?

	
mgkit.mappings.pandas_map.group_dataframe_by_mapping(dataframe, mapping, root_taxon, name_dict=None)

	Return a pandas.DataFrame filtered by mapping and root taxon, the
values for each column is averaged over all genes mapping to a category.

	Parameters

	
	dataframe (DataFrame) – DataFrame with multindex gene-root

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->genes

	root_taxon (str [https://docs.python.org/3/library/stdtypes.html#str]) – root taxon to group genes

	name_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->name

	Return DataFrame

	DataFrame filtered

	
mgkit.mappings.pandas_map.make_stat_table(dataframes, roots)

	Produces a pandas.DataFrame that summarise the supplied
DataFrames. The stats include mean, stdev and coefficient of variation for
each root taxon.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of root taxa to which each table belongs

	Return DataFrame

	returns a DataFrame instance

 mgkit.mappings.taxon module

mgkit.mappings.taxon module

Module used to map taxon_id to different levels in the taxonomy.

	
mgkit.mappings.taxon.map_taxon_by_id_list(taxon_id, map_ids, func)

	Maps a taxon_id to a list of taxon IDs, using the function supplied.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to map

	map_ids (iterable) – list of taxon IDs to which the taxon_id will be
mapped.

	func (func) – function used to map the IDs, accepts two taxon IDs

	Results:

	
	generator: generator expression of all IDs in map_ids to which taxon_id

	can be mapped.

Example

If mapping a taxon (Prevotella ruminicola) to Prevotella or
Clostridium, using as func mgkit.taxon.is_ancestor() and
taxonomy is an instance of mgkit.taxon.Taxonomy.

>>> import functools
>>> from mgkit.taxon import is_ancestor
>>> func = functools.partial(is_ancestor, taxonomy)
>>> list(map_taxon_by_id_list(839, [838, 1485], func))
[838]

 mgkit.mappings.utils module

mgkit.mappings.utils module

Utilities to map genes

	
mgkit.mappings.utils.count_genes_in_mapping(gene_lists, labels, mapping, normalise=False)

	Maps lists of ids to a mapping dictionary, returning a
pandas.DataFrame in which the rows are the labels provided and
the columns the categories to which the ids map. Each element of the matrix
label-category is the sum of all ids in the relative gene list that maps to
the specific category.

	Parameters

	
	gene_lists (iterable) – an iterable in which each element is a iterable
of ids that can be mapped to mapping

	labels (iterable) – an iterable of strings that defines the labels to
be used in the resulting rows in the pandas.DataFrame; must
have the same length as gene_lists

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form:
gene_id->[cat1, cat2, .., catN]

	normalise (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the counts are normalised over the total for
each row.

	Returns

	a pandas.DataFrame instance

	
mgkit.mappings.utils.group_annotation_by_mapping(annotations, mapping, attr='ko')

	Group annotations by mapping dictionary

	Parameters

	
	annotations (iterable) – iterable of gff.GFFKeg instances

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with mappings for the attribute requested

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation to be used as key in mapping

	Return dict

	dictionary category->annotations

 mgkit.net package

mgkit.net package

Submodules

	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

Module contents

Package with functions/classes used in accessing network resources

 mgkit.net.embl module

mgkit.net.embl module

Access EMBL Services

	
exception mgkit.net.embl.EntryNotFound

	Bases: exceptions.Exception

Raised if at least one entry was not found by get_sequences_by_ids().
NOT_FOUND is used to check if any entry wasn’t downloaded.

	
exception mgkit.net.embl.NoEntryFound

	Bases: exceptions.Exception

Raised if no sequences where found by get_sequences_by_ids(), the
check is based on the NONE_FOUND variable.

	
mgkit.net.embl.datawarehouse_search(query, domain='sequence', result='sequence_release', display='fasta', offset=0, length=100000, contact=None, download='gzip', url='http://www.ebi.ac.uk/ena/data/warehouse/search?', fields=None)

	
Changed in version 0.2.3: added fields parameter to retrieve tab separated information

New in version 0.1.13.

Perform a datawarehouse search on EMBL dbs. Instructions on the query
language used to query the datawarehouse are available at this page [http://www.ebi.ac.uk/ena/about/browser#data_warehouse] with more details
about the databases domains at this page [http://www.ebi.ac.uk/ena/data/warehouse/usage]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query for the search enging

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – database domain to search

	result (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain result requested

	display (str [https://docs.python.org/3/library/stdtypes.html#str]) – display option (format to retrieve the entries)

	offset (int [https://docs.python.org/3/library/functions.html#int]) – the offset of the search results, defaults to the first

	length (int [https://docs.python.org/3/library/functions.html#int]) – number of results to retrieve at the specified offset
and the limit is automatically set a 100,000 records for query

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email of the user

	download (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of response. Gzip responses are automatically
decompressed

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – base URL for the resource

	fields (None [https://docs.python.org/3/library/constants.html#None], iterable) – must be an iterable of fields to be returned
if display is set to report

	Returns

	the raw request

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Examples

Querying EMBL for all sequences of type rRNA of the Clostridium
genus. Only from the EMBL release database in fasta format:

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'fasta'
>>> data = embl.datawarehouse_search(query, result=result,
... display=display)
>>> len(data)
35919

Each entry taxon_id from the same data can be retrieved using report
as the display option and fields an iterable of fields to just
(‘accession’, tax_id’):

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'report'
>>> fields = ('accession', 'tax_id')
>>> data = embl.datawarehouse_search(query, result=result,
 display=display, fields=fields)

	
mgkit.net.embl.dbfetch(embl_ids, db='embl', contact=None, out_format='seqxml', num_req=10)

	
New in version 0.1.12.

Function that allows to use dbfetch service (REST). More information on the
output formats and the database available at the
service page [http://www.ebi.ac.uk/Tools/dbfetch/syntax.jsp]

	Parameters

	
	embl_ids (str [https://docs.python.org/3/library/stdtypes.html#str], iterable) – list or single sequence id to retrieve

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database from which retrieve the sequence data

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email contact to use as per EMBL guidlines

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format, depends on database

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of ids per request

	Returns

	a list with the results from each request sent. Each request sent
has a maximum number num_req of ids, so the number of items in the
list depends by the number of ids in embl_ids and the value of
num_req.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.net.embl.get_sequences_by_ids(embl_ids, contact=None, out_format='fasta', num_req=10, embl_db='embl_cds', strict=False)

	
Changed in version 0.3.4: removed compress as it’s bases on the requests package

Downloads entries using EBI REST API. It can download one entry at a
time or accept an iterable and all sequences will be downloaded in batches
of at most num_req.

It’s fairly general, so can be customised, from the DB used to the output
format: all batches are simply concatenate.

Note

There are some checks on the some errors reported by the EMBL api, but
not documented, in particular two errors, which are just reported as
text lines in the fasta file (the only one tested at this time).

The are two possible cases:

	if no entry was found NoEntryFound will be raised.

	if at least one entry wasn’t found:

	if strict is False (the default) the error will be just logged as a
debug message

	if strict is True EntryNotFound is raised

	Parameters

	
	embl_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – list of ids to download

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the entry

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of entries to download with each request

	embl_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db to which the ids refer to

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a check on the number of entries retrieved is
performed

	Returns

	the entries requested

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntryNotFound – if at least an entry was not found

	NoEntryFound – if NO entry were found

Warning

The number of sequences that can be downloaded at a time is 11, it
seems, since the returned sequences for each request was at most 11. I
didn’t find any mention of this in the API docs, but it may be a
restriction that’s temporary.

 mgkit.net.pfam module

mgkit.net.pfam module

New in version 0.2.3.

This module defines routine to access Pfam information using a
network connection

	
mgkit.net.pfam.get_pfam_families(key='id')

	
New in version 0.2.3.

Gets a dictionary with the accession/id/description of Pfam families
from Pfam. This list can be accessed using the URL:
http://pfam.xfam.org/families?output=text

The output is a tab separated file where the fields are:

	ACCESSION

	ID

	DESCRIPTION

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – if the value is id, the key of the dictionary is the ID,
otherwise ID swaps position with ACCESSION (the new key)

	Returns

	by default the function returns a dictionary that uses the ID
as key, while the value is a tuple (ACCESSION, DESCRIPTION). ID is the
default because the hmmer2gff - Convert HMMER output to GFF script output uses ID as gene_id
value when using the HMM provided by Pfam

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 mgkit.net.uniprot module

mgkit.net.uniprot module

Contains function and constants for Uniprot access

	
mgkit.net.uniprot.get_gene_info(gene_ids, columns, max_req=50, contact=None)

	
New in version 0.1.12.

Get informations about a list of genes. it uses query_uniprot() to
send the request and format the response in a dictionary.

	Parameters

	
	gene_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – gene id(s) to get informations for

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of columns

	max_req (int [https://docs.python.org/3/library/functions.html#int]) – number of maximum gene_ids per request

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	dictionary where the keys are the gene_ids requested and the
values are dictionaries with the names of the columns requested as
keys and the corresponding values, which can be lists if the values are
are semicolon separated strings.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

To get the taxonomy ids for some genes:

>>> uniprot.get_gene_info(['Q09575', 'Q8DQI6'], ['organism-id'])
{'Q09575': {'organism-id': '6239'}, 'Q8DQI6': {'organism-id': '171101'}}

	
mgkit.net.uniprot.get_gene_info_iter(gene_ids, columns, contact=None, max_req=50)

	
New in version 0.3.3.

Alternative function to get_gene_info(), returning an iterator to
avoid connections timeouts when updating a dictionary

This funciton’s parameters are the same as get_gene_info()

	
mgkit.net.uniprot.get_ko_to_eggnog_mappings(ko_ids, contact=None)

	
New in version 0.1.14.

It’s not possible to map in one go KO IDs to eggNOG IDs via the API in
Uniprot. This function uses query_uniprot() to get all Uniprot IDs
requested and the return a dictionary with all their eggNOG IDs they map
to.

	Parameters

	
	ko_ids (iterable) – an iterable of KO IDs

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	The format of the resulting dictionary is
ko_id -> {eggnog_id1, ..}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.get_mappings(entry_ids, db_from='ID', db_to='EMBL', out_format='tab', contact=None)

	Gets mapping of genes using Uniprot REST API. The db_from and db_to values
are the ones accepted by Uniprot API. The same applies to out_format, the
only processed formats are ‘list’, which returns a list of the mappings
(should be used with one gene only) and ‘tab’, which returns a dictionary
with the mapping. All other values returns a string with the newline
stripped.

	Parameters

	
	entry_ids (iterable) – iterable of ids to be mapped (there’s a limit)
to the maximum length of a HTTP request, so it should be less than 50

	db_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB for elements in entry_ids

	db_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB to which map entry_ids

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the mapping; ‘list’ and ‘tab’ are
processed

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	tuple, dict or str depending on out_format value

	
mgkit.net.uniprot.get_sequences_by_ko(ko_id, taxonomy, contact=None, reviewed=True)

	Gets sequences from Uniprot, restricting to the taxon id passed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – KO id of the sequences to download

	taxonomy (int [https://docs.python.org/3/library/functions.html#int]) – id of the taxon

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested by
Uniprot API)

	reviewed (bool [https://docs.python.org/3/library/functions.html#bool]) – if the sequences requested must be reviewed

	Returns

	string with the fasta file downloaded

	
mgkit.net.uniprot.get_uniprot_ec_mappings(gene_ids, contact=None)

	
New in version 0.1.14.

Shortcut to download EC mapping of Uniprot IDs. Uses get_gene_info()
passing the correct column (ec).

	
mgkit.net.uniprot.ko_to_mapping(ko_id, query, columns, contact=None)

	Returns the mappings to the supplied KO. Can be used for any id, the
query format is free as well as the columns returned. The only
restriction is using a tab format, that is parsed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – id used in the query

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query passed to the Uniprot API, ko_id is replaced
using str.format()

	column (str [https://docs.python.org/3/library/stdtypes.html#str]) – column used in the results table used to map the ids

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

Note

each mapping in the column is separated by a ;

	
mgkit.net.uniprot.parse_uniprot_response(data, simple=True)

	
New in version 0.1.12.

Parses raw response from a Uniprot query (tab format only) from functions
like query_uniprot() into a dictionary. It requires that the first
column is the entry id (or any other unique id).

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – string response from Uniprot

	simple (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the number of columns is 1, the dictionary
returned has a simplified structure

	Returns

	The format of the resulting dictionary is
entry_id -> {column1 -> value, column2 -> value, ..} unless there’s
only one column and simple is True, in which case the value is
equal to the value of the only column.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.query_uniprot(query, columns=None, format='tab', limit=None, contact=None, baseurl='http://www.uniprot.org/uniprot/')

	
New in version 0.1.12.

Changed in version 0.1.13: added baseurl and made columns a default argument

Queries Uniprot, returning the raw response in tbe format specified. More
informations at the page [http://www.uniprot.org/faq/28]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query to submit, as put in the input box

	columns (None [https://docs.python.org/3/library/constants.html#None], iterable) – list of columns to return

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – response format

	limit (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – number of entries to return or None to request all
entries

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	baseurl (str [https://docs.python.org/3/library/stdtypes.html#str]) – base url for the REST API, can be either
UNIPROT_GET or UNIPROT_TAXONOMY

	Returns

	raw response from the query

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

To get the taxonomy ids for some genes:

>>> uniprot.query_uniprot('Q09575 OR Q8DQI6', ['id', 'organism-id'])
'Entry\tOrganism ID\nQ8DQI6\t171101\nQ09575\t6239\n'

Warning

because of limits in the length of URLs, it’s advised to limit the
length of the query string.

 mgkit.net.utils module

mgkit.net.utils module

Utility functions for the network package

	
mgkit.net.utils.url_open(url, data=None, headers=None, agent=None, get=True, stream=False)

	
Changed in version 0.3.4: now uses requests

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – parameters to pass to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – any additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str]) – user agent to use

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the request is a GET, False for POST

	stream (bool [https://docs.python.org/3/library/functions.html#bool]) – returns an iterator to stream over

	url – url to request

	data – data to add to the request

	compress (bool [https://docs.python.org/3/library/functions.html#bool]) – if the response should be compressed

	agent – if supplied, the ‘User-Agent’ header we’ll be added to
the request

	Returns

	the response handle

	
mgkit.net.utils.url_read(url, data=None, agent=None, headers=None, get=True)

	
Changed in version 0.3.4: now uses requests, removed compressed and added headers, get

Opens an URL and reads the

Wrapper of url_open() which reads the full response

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – data to add to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – if supplied, the ‘User-Agent’ header we’ll be
added to the request

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – uses a GET operation if True, POST if False

	Returns

	the response data

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 mgkit.plots package

mgkit.plots package

Submodules

	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

Module contents

New in version 0.1.14.

 mgkit.plots.abund module

mgkit.plots.abund module

New in version 0.1.15.

Module to plot relative abundances in a 1D or 3D projection

	
mgkit.plots.abund.col_func_firstel(key, colors=None)

	

	
mgkit.plots.abund.col_func_name(key, func=None, colors=None)

	

	
mgkit.plots.abund.col_func_taxon(taxon_id, taxonomy, anc_ids, colpal)

	

	
mgkit.plots.abund.draw_1d_grid(ax, labels=['LAM', 'SAM'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a 1D axis, to display propotions.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.draw_axis_internal_triangle(ax, color='r', linewidth=2.0)

	
New in version 0.2.5.

Draws a triangle that indicates the 50% limit for all 3 samples

	Parameters

	
	ax – axis to use

	color (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – color used to draw the triangle

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width

	
mgkit.plots.abund.draw_circles(ax, data, col_func=<function col_func_name>, csize=200, alpha=0.5, sizescale=None, order=None, linewidths=0.0, edgecolor='none')

	
Changed in version 0.2.0: changed internals and added return value

Draws a scatter plot over either a planar-simplex projection, if the number
of coordinates is 3, or in a 1D axis.

If the number of coordinates is 3, project_point() is used to project
the point in 2 coordinates. The coordinates are converted in proportions
internally.

	Parameters

	
	ax – axis to plot on

	data (pandas.DataFrame) – a DataFrame with 2 for a 1D plot or 3 columns
for a planar-simplex

	col_func (func) – a function that accept a parameter, an element of the
DataFrame index and returns a colour for it

	csize (int [https://docs.python.org/3/library/functions.html#int]) – the base size of the circles

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – transparency of the circles, between 0 and 1 included

	sizescale (None [https://docs.python.org/3/library/constants.html#None], pandas.Series) – a Series or dictionary with the same
elements as the Index of data, whose values are the size factors
that are multiplied to csize. If None, the size of the
circles is equal to csize

	order (None [https://docs.python.org/3/library/constants.html#None], iterable) – iterable with the elements of data Index, to
specify the order in which the circles must be plotted. If None,
the order is the same as data.index

	linewidths (float [https://docs.python.org/3/library/functions.html#float]) – width of the circle line

	edgecolor (str [https://docs.python.org/3/library/stdtypes.html#str]) – color of the circle line

	Returns

	the return value of matplotlib scatter

	Return type

	PathCollection

Note

To not have circle lines, edgecolor must be ‘none’ and
linewidths equal 0

	
mgkit.plots.abund.draw_triangle_grid(ax, labels=['LAM', 'SAM', 'EAM'], linewidth=1.0, styles=['-', ':', '--'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a triangle as axes, for a planar-simplex projection.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	styles (None [https://docs.python.org/3/library/constants.html#None], iterable) – either None for solid lines or matplotlib
line markers. These are in sync between the internal lines and
the axes.

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width for the axes, the internal lines are
equal to 0.75 * linewidth

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.project_point(point)

	Project a tuple containing coordinates (i.e. x, y, z) to planar-simplex.

	Parameters

	point (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – contains the three coordinates to project

	Returns

	the projected point in a planar-simplex

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

 mgkit.plots.boxplot module

mgkit.plots.boxplot module

New in version 0.1.14.

Code related to boxplots

	
mgkit.plots.boxplot.add_values_to_boxplot(dataframe, ax, plot_data, plot_order, data_colours=None, alpha=0.5, s=80, marker='o', linewidth=0.01, box_vert=False)

	
New in version 0.1.13.

Changed in version 0.1.14: added box_vert parameter

Changed in version 0.1.16: changed default value for linewidth

Adds the values of a dataframe used in boxplot_dataframe() to the
plot. linewidth must be higher than 0 if a marker like | is used.

A list of markers is available at
this page [http://matplotlib.org/api/markers_api.html]

Warning

Contrary to boxplot_dataframe(), the boxplot default is
horizontal (box_vert). The default will change in a later version.

	Parameters

	
	dataframe – dataframe with the values to plot

	ax – an axis instance

	plot_data – return value from boxplot_dataframe()

	plot_order (iterable) – row order used to plot the boxes

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – colors used for the values

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – alpha value for the colour

	s (int [https://docs.python.org/3/library/functions.html#int]) – size of the marker drawn

	marker (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the accepted matplotlib markers

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – width of the line used to draw the marker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the original boxplot is vertical or not

	
mgkit.plots.boxplot.add_significance_to_boxplot(sign_indices, ax, pos, box_vert=True, fontsize=16)

	
New in version 0.1.16.

Add significance groups to boxplots

	Parameters

	
	sign_indices (iterable) – iterable in which each element is a tuple;
each element of the tuple is the numerical index of the position of
the significant boxplot

	ax – an axis instance

	pos (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the 2 values are the coordinates for the top line, and the
the lowest bound for the whisker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if the boxplot is vertical

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – size for the * (star)

	
mgkit.plots.boxplot.boxplot_dataframe_multindex(dataframe, axes, plot_order=None, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True)

	
New in version 0.1.13.

Todo

documentation

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An axes object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	axes – an axes instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X axes

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	Returns

	the plot data same as matplotlib boxplot function

	
mgkit.plots.boxplot.boxplot_dataframe(dataframe, plot_order, ax, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True, widths=0.5)

	
New in version 0.1.7: To move from an all-in-one drawing to a more modular one.

Changed in version 0.1.13: added box_vert parameter

Changed in version 0.1.16: added widths parameter

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An ax object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	ax – an axis instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X ax

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if False the boxplots are drawn horizontally

	widths (float [https://docs.python.org/3/library/functions.html#float]) – width (scalar or array) of the boxplots width(s)

	Returns

	the plot data; same as matplotlib boxplot function

 mgkit.plots.colors module

mgkit.plots.colors module

New in version 0.1.14.

Contains code related to colour

	
mgkit.plots.colors.float_to_hex_color(r, g, b)

	
New in version 0.1.14.

Converts RGB float values to Hexadecimal value string

	
mgkit.plots.colors.palette_float_to_hex(palette)

	
New in version 0.1.16.

Applies float_to_hex_color() to an iterable of colors

 mgkit.plots.heatmap module

mgkit.plots.heatmap module

New in version 0.1.14.

Code related to heatmaps.

	
mgkit.plots.heatmap.baseheatmap(data, ax, norm=None, cmap=None, xticks=None, yticks=None, fontsize=18, meshopts=None, annot=False, annotopts=None)

	
Changed in version 0.2.3: added annot and annot_args arguments

A basic heatmap using matplotlib.pyplot.pcolormesh(). It expect a
pandas.DataFrame.

Note

Rows a plot bottom to up, while the columns left to right. Change the
order of the DataFrame if needed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	xticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_xticklabels

	yticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_yticklabels

	fontsize (int [https://docs.python.org/3/library/functions.html#int]) – font size to use for the labels

	meshopts (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to
matplotlib.pyplot.pcolormesh()

	annot (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the values of the matrix will be added

	annot_args (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the options for the
annotations. The option format is a function that returns the
formatted number, defaults to a number with no decimal part

	Returns

	the return value of
matplotlib.pyplot.pcolormesh()

	Return type

	matplotlib.collections.QuadMesh

	
mgkit.plots.heatmap.grouped_spine(groups, labels, ax, which='y', spine='right', spine_opts=None, start=0)

	
Changed in version 0.2.0: added va, ha keys to spine_opts, changed the label positioning

Changed in version 0.2.5: added start parameter

Changes the spine of an heatmap axis given the groups of labels.

Note

It should work for any plot, but was not tested

	Parameters

	
	groups (iterable) – a nested list where each is element is a list
containing the labels that belong to that group.

	labels (iterable) – an iterable with the labels of the groups. Needs to
be in the same order as groups

	ax – axis to use (same as heatmap)

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) – to specify the axis, either x or y

	spine (str [https://docs.python.org/3/library/stdtypes.html#str]) – position of the spine. if which is x accepted values
are top and bottom, if which is y left and right are
accepted

	spine_opts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to the spine class

	start (int [https://docs.python.org/3/library/functions.html#int]) – the start coordinate for the grouped spine. Defaults to 0

	
mgkit.plots.heatmap.dendrogram(data, ax, method='complete', orientation='top', use_dist=True, dist_func=<function pdist>)

	
Changed in version 0.1.16: added use_dist and dist_func parameters

Plots a dendrogram of the clustered rows of the given matrix; if the
columns are to be clustered, the transposed matrix needs to be passed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – clustering method used, internally
scipy.cluster.hierarchy.linkage() is used.

	orientation (str [https://docs.python.org/3/library/stdtypes.html#str]) – direction for the plot. top, bottom, left and
right are accepted; top will draw the leaves at the bottom.

	use_dist (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function dist_func will be applied to
data to get a distance matrix

	dist_func (func) – distance function to be used

	Returns

	The dendrogram plotted, as returned by
scipy.cluster.hierarchy.dendrogram()

	
mgkit.plots.heatmap.heatmap_clustered(data, figsize=(10, 5), cmap=None, norm=None)

	Plots a heatmap clustered on both rows and columns.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – passed to mgkit.plots.utils.get_grid_figure()

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

 mgkit.plots.utils module

mgkit.plots.utils module

New in version 0.1.14.

Misc code

	
mgkit.plots.utils.get_grid_figure(rows, cols, dpi=300, figsize=(10, 20), **kwd)

	
New in version 0.1.13.

Simple wrapper to init a GridSpec figure

	Parameters

	
	rows (int [https://docs.python.org/3/library/functions.html#int]) – number of rows

	columns (int [https://docs.python.org/3/library/functions.html#int]) – number of columns

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.get_single_figure(dpi=300, figsize=(10, 20), aspect='auto')

	
Changed in version 0.1.14: added aspect parameter

Simple wrapper to init a single figure

	Parameters

	
	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	aspect (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]) – aspect ratio to be passed to figure.add_subplot

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.legend_patches(labels, colors)

	
New in version 0.3.1.

Makes handles (using matplotlib Patch) that can be passed to the legend
method of a matplotlib axes instance

	Parameters

	
	labels (iterable) – iterable that yields a label

	colors (iterable) – iterable that yields a valid matplotlib color

	Returns

	list of patches that can be passed to the handles parameter in
the ax.legend method

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 mgkit.snps package

mgkit.snps package

Submodules

	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

Module contents

SNPs data package

 mgkit.snps.classes module

mgkit.snps.classes module

Manage SNP data.

	
class mgkit.snps.classes.GeneSNP(gene_id='', taxon_id=0, exp_syn=0, exp_nonsyn=0, coverage=None, snps=None, uid=None, json_data=None)

	Bases: mgkit.snps.classes.RatioMixIn

New in version 0.1.13.

Class defining gene and synonymous/non-synonymous SNPs.

It defines background synonymous/non-synonymous attributes and only has a
method right now, which calculate pN/pS ratio. The method is added through
a mixin object, so the ratio can be customised and be shared with the old
implementation.

	
uid

	unique id for the isoform (to be referenced in a GFF file)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_id

	gene id

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
taxon_id

	gene taxon

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_syn

	expected synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_nonsyn

	expected non-synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
coverage

	gene coverage

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
snps

	list of SNPs associated with the gene, each element is a
tuple with the position (relative to the gene start), the second is
the nucleotidic change and the third is the aa SNP type as defined
by SNPType.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

The main difference with the GeneSyn is that all snps are kept
and syn and nonsyn are not attributes but properties that return
the count of synonymous and non-synonymous SNPs in the snps list.

Warning

This class uses more memory than GeneSyn because it doesn’t
use __slots__, it may be changed in later versions.

	
add(other)

	Inplace addition of another instance values. No check for them being
the same gene/taxon, it’s up to the user to check that they can be
added together.

	Parameters

	other – instance of GeneSyn to add

	
add_snp(position, change, snp_type=<SNPType.unknown: 0>)

	Adds a SNP to the list

	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – SNP position, relative to the gene start

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	snp_type (enum) – one of the values defined in SNPType

	
coverage = None

	

	
exp_nonsyn = None

	

	
exp_syn = None

	

	
from_json(data)

	Instantiate the instance with values from a json definition

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – json representation, as returned by
GeneSNP.to_json()

	
gene_id = None

	

	
nonsyn

	Returns the expected non-synonymous changes

	
snps = None

	

	
syn

	Returns the expected synonymous changes

	
taxon_id = None

	

	
to_json()

	Returns a json definition of the instance

	Returns

	json representation of the instance

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
uid = None

	

	
class mgkit.snps.classes.RatioMixIn

	Bases: future.types.newobject.newobject

	
calc_ratio(haplotypes=False)

	
Changed in version 0.2.2: split the function to handle flag_value in another method

Calculate \(\frac {pN}{pS}\) for the gene.

(1)\[\frac {pN}{pS} = \frac{ ^{oN}/_{eN}}{ ^{oS}/_{eS}}\]

WHere:

	oN (number of non-synonymous - nonsyn)

	eN (expected number of non-synonymous - exp_nonsyn)

	oS (number of synonymous - syn)

	eS (expected number of synonymous - exp_syn)

	Parameters

	
	flag_value (bool [https://docs.python.org/3/library/functions.html#bool]) – when there’s no way to calculate the ratio, the
possible cases will be flagged with a negative number. This
allows to make substitutions for these values

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, coverage information is not used,
because the SNPs are assumed to come from an alignment that has
sequences having haplotypes

	Returns

	the \(\frac {pN}{pS}\) for the gene.

Note

Because pN or pS can be 0, and the return value would be NaN,
we take in account some special cases. The default return value
in this cases is numpy.nan.

	Both synonymous and non-synonymous values are 0:

	if both the syn and nonsyn attributes are 0 but there’s
coverage for this gene, we return a 0, as there’s no
evolution in this gene. Before, the coverage was checked by
this method against either the passed min_cov parameter
that was equal to MIN_COV. Now the case is for the
user to check the coverage and functions in
mgkit.snps.conv_func do that. If enough coverage was
achieved, the haplotypes parameter can be used to return a
0

All other cases return a NaN value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calc_ratio_flag()

	
New in version 0.2.2.

Handles cases where it’s important to flag the returned value, as
explained in GeneSNP.calc_ratio(), and when the both the number
of synonymous and non-synonymous is greater than 0, the pN/pS value is
returned.

	
	The number of non-synonymous is greater than 0 but the number of

	
synonymous is 0:

	if flag_value is True, the returned value is -1

	The number of synonymous is greater than 0 but the number of
non-synonymous is 0:

	if flag_value is True, the returned value is -2

	\(oS\)

	\(oN\)

	return value

	>0

	>0

	pN/pS

	0

	0

	-3

	>0

	0

	-1

	0

	>0

	-2

	
class mgkit.snps.classes.SNPType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

New in version 0.1.13.

Enum that defines SNP types. Supported at the moment:

	unknown = 0

	syn (synonymous) = 1

	nonsyn (non-synonymous) = 2

Note

No support is planned at the moment to support indel mutations

	
nonsyn = 2

	

	
syn = 1

	

	
unknown = 0

	

 mgkit.snps.conv_func module

mgkit.snps.conv_func module

Wappers to use some of the general function of the snps package
in a simpler way.

	
mgkit.snps.conv_func.get_full_dataframe(snp_data, taxonomy, min_num=3, index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is None (gene-taxon)

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_map_dataframe(snp_data, taxonomy, gene_map, min_num=3, index_type='gene', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_taxon_dataframe(snp_data, taxonomy, gene_map, min_num=3, rank='genus', index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Todo

edit docstring

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_rank_dataframe(snp_data, taxonomy, min_num=3, rank='order', index_type='taxon', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the specified rank. Higher taxa won’t
be included.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
taxon_func parameter map_taxon_id_to_rank(),
with include_higher equals to False

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to map. Valid ranks are found in
mgkit.taxon.TAXON_RANKS

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘taxon’

	Return type

	DataFrame

 mgkit.snps.filter module

mgkit.snps.filter module

SNPs filtering functions

	
mgkit.snps.filter.filter_genesyn_by_coverage(gene_syn, min_cov=None)

	Checks if the coverage of the provided gene_syn is at least min_cov

	Parameters

	
	gene_syn – GeneSyn instance

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage allowed (included)

	Returns

	True if the gene has enough coverage

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if min_cov is None

	
mgkit.snps.filter.filter_genesyn_by_gene_id(gene_syn, gene_ids=None, exclude=False, id_func=None)

	Checks if the gene_id is listed in the filter_list.

	Parameters

	
	gene_syn – GeneSyn instance

	gene_ids (iterable) – list of gene IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if gene_ids is None

	
mgkit.snps.filter.filter_genesyn_by_taxon_id(gene_syn, taxonomy=None, filter_list=None, exclude=False, func=None)

	Checks if the taxon_id attribute of gene_syn is the filter_list.
Excelude reverses the result. If func is supplied, it’s used to traverse
the taxonomy.

	Parameters

	
	gene_syn – GeneSyn instance

	taxonomy – a valid taxonomy (instance of
Taxonomy)

	filter_list (iterable) – list of taxon IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	func (func) – is_ancestor()

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if filter_list is None or taxonomy is None and func is not
None

	
mgkit.snps.filter.get_default_filters(taxonomy, **kwargs)

	Retuns a list of filters that are used by default. it needs a valid
taxonomy and gets the default arguments from
mgkit.consts.DEFAULT_SNP_FILTER.

	
mgkit.snps.filter.pipe_filters(iterable, *funcs)

	Pipes a list of filter to iterable, using the python ifilter function in
the itertools module. Now using builtins.filter

 mgkit.snps.funcs module

mgkit.snps.funcs module

Functions used in SNPs manipulation

	
mgkit.snps.funcs.build_rank_matrix(dataframe, taxonomy=None, taxon_rank=None)

	Make a rank matrix from a pandas.Series with the pN/pS values of a
dataset.

	Parameters

	
	dataframe – pandas.Series instance with a MultiIndex
(gene-taxon)

	taxonomy – taxon.Taxonomy instance with the full
taxonomy

	taxon_rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to limit the specifity of the taxa
included

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.combine_sample_snps(snps_data, min_num, filters, index_type=None, gene_func=None, taxon_func=None, use_uid=False, flag_values=False, haplotypes=True, store_uids=False)

	
Changed in version 0.2.2: added use_uid argument

Changed in version 0.3.1: added haplotypes

Changed in version 0.4.0: added store_uids

Combine a dictionary sample->gene_index->GeneSyn into a
pandas.DataFrame. The dictionary is first filtered with the
functions in filters, mapped to different taxa and genes using
taxon_func and gene_func respectively. The returned DataFrame is also
filtered for each row having at least a min_num of not NaN values.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the GeneSNP instances

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – the minimum number of not NaN values necessary in a row
to be returned

	filters (iterable) – iterable containing filter functions, a list can be
found in mgkit.snps.filter

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – if None, each row index for the DataFrame
will be a MultiIndex with gene and taxon as elements. If the
equals ‘gene’, the row index will be gene based and if ‘taxon’ will
be taxon based

	gene_func (func) – a function to map a gene_id to a gene_map. See
mapper.map_gene_id() for an example

	taxon_func (func) – a function to map a taxon_id to a list of IDs. See
mapper.map_taxon_id_to_rank or
mapper.map_taxon_id_to_ancestor for examples

	use_uid (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses the GeneSNP.uid instead of
GeneSNP.gene_id

	flag_values (bool [https://docs.python.org/3/library/functions.html#bool]) – if True,
mgkit.snps.classes.GeneSNP.calc_ratio_flag() will be used,
instead of mgkit.snps.classes.GeneSNP.calc_ratio()

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if flag_values is False, and haplotypes is
True, the 0/0 case will be returned as 0 instead of NaN

	store_uids (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a dictionary with the uid used for each
cell (e.g. gene/taxon/sample)

	Returns

	pandas.DataFrame with the pN/pS values for the
input SNPs, with the columns being the samples. if store_uids is True
the return value is a tuple (DataFrame, dict)

	Return type

	DataFrame

	
mgkit.snps.funcs.flat_sample_snps(snps_data, min_cov)

	
New in version 0.1.11.

Adds all the values of a gene across all samples into one instance of
classes.GeneSNP, giving the average gene among all samples.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the instances of
classes.GeneSNP

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage required for the each instance to be
added

	Returns

	the dictionary with only one key (all_samples), which can be
used with combine_sample_snps()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.snps.funcs.group_rank_matrix(dataframe, gene_map)

	Group a rank matrix using a mapping, in the form map_id->ko_ids.

	Parameters

	
	dataframe – instance of a rank matrix from build_rank_matrix()

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the mapping

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.order_ratios(ratios, aggr_func=<function median>, reverse=False, key_filter=None)

	Given a dictionary of id->iterable where iterable contains the values of
interest, the function uses aggr_func to sort (ascending by default) it and
return a list with the key in the sorted order.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary instance id->iterable

	aggr_func (function) – any function returning a value that can be used
as a key in sorting

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – the default is ascending sorting (False), set to True
to reverse key_filter: list of keys to use for ordering, if None, every
key is used

	Returns

	iterable with the sort order

	
mgkit.snps.funcs.significance_test(dataframe, taxon_id1, taxon_id2, test_func=<function ks_2samp>)

	
New in version 0.1.11.

Perform a statistical test on each gene distribution in two different taxa.

For each gene common to the two taxa, the distribution of values in all
samples (columns) between the two specified taxa is tested.

	Parameters

	
	dataframe – pandas.DataFrame instance

	taxon_id1 – the first taxon ID

	taxon_id2 – the second taxon ID

	test_func – function used to test,
defaults to scipy.stats.ks_2samp()

	Returns

	with all pvalues from the tests

	Return type

	pandas.Series

	
mgkit.snps.funcs.write_sign_genes_table(out_file, dataframe, sign_genes, taxonomy, gene_names=None)

	Write a table with the list of significant genes found in a dataframe, the
significant gene list is the result of
wilcoxon_pairwise_test_dataframe().

	Out_file

	the file name or file object to write the file

	Dataframe

	the dataframe which was tested for significant genes

	Sign_genes

	gene list that are significant

	Taxonomy

	taxonomy object

	Gene_names

	dictionary with the name of the the genes. Optional

 mgkit.snps.mapper module

mgkit.snps.mapper module

Mapping functions for SNPs - Should be move into an ‘iterator’ package to
be shared with other modules?

	
mgkit.snps.mapper.map_gene_id(gene_id, gene_map=None)

	Returns an iterator for all the values of a dictionary. if gene_id is not
found in the gene_map, an empty iterator is returned.

	Parameters

	
	gene_id (immutable) – gene_id or any other dictionary key.

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form key->[v1, v2, .. vN]

	Returns

	iterator (empty if gene_id is not in gene_map) with the
values

	Return type

	generator

	
mgkit.snps.mapper.map_taxon_id_to_ancestor(taxon_id, anc_ids=None, func=None)

	Given a taxon_id and a list of ancestors IDs, returns an iterator with the
IDs that are ancestors of taxon_id.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	anc_ids (iterable) – taxon IDs to check for ancestry

	func – function used to check for ancestry - partial function for
mgkit.taxon.is_ancestor() that accepts taxon_id and anc_id

	Returns

	iterator with the values or empty

	Return type

	generator

Note

check mgkit.filter.taxon.filter_taxon_by_id_list() for examples
on using func

	
mgkit.snps.mapper.map_taxon_id_to_rank(taxon_id, rank=None, taxonomy=None, include_higher=False)

	Given a taxon_id, returns an iterator with only the element that correspond
to the requested rank. If the taxon returned by
mgkit.taxon.Taxonomy.get_ranked_taxon has a different rank
than requested, the iterator will be empty if include_higher is False
and the returned taxon ID if True.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank used (mgkit.taxon.TAXON_RANKS)

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if a rank higher than the one
requested is to be returned

	Returns

	iterator with the values or empty

	Return type

	generator

 mgkit.utils package

mgkit.utils package

Submodules

	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

Module contents

Package that contains utility functions/classes

 mgkit.utils.common module

mgkit.utils.common module

Utility functions

	
mgkit.utils.common.apply_func_window(func, data, window, step=0)

	

	
mgkit.utils.common.average_length(a1s, a1e, a2s, a2e)

	Given two sets of coordinates, a1 and a2, returns the average length.

	Parameters

	
	a1s (int [https://docs.python.org/3/library/functions.html#int]) – a1 leftmost number

	a1e (int [https://docs.python.org/3/library/functions.html#int]) – a1 rightmost number

	a2s (int [https://docs.python.org/3/library/functions.html#int]) – a2 leftmost number

	a2e (int [https://docs.python.org/3/library/functions.html#int]) – a2 rightmost number

	Return float

	the average length

	
mgkit.utils.common.between(pos, start, end)

	Tests if a number is between two others

	Parameters

	
	pos (int [https://docs.python.org/3/library/functions.html#int]) – number to test

	start (int [https://docs.python.org/3/library/functions.html#int]) – leftmost number

	end (int [https://docs.python.org/3/library/functions.html#int]) – rightmost number

	Return bool

	if the number is between start and end

	
mgkit.utils.common.complement_ranges(intervals, end=None)

	
New in version 0.3.1.

Perform a complement operation of the list of intervals, i.e. returning the
ranges (tuples) that are not included in the list of intervals.
union_ranges() is first called on the intervals.

Note

the end parameter is there for cases where the ranges passed don’t
cover the whole space. Assuming a list of ranges from annotations on a
nucleotidic sequence, if the last range doesn’t include the last
position of the sequence, passing end equal to the length of the
sequence will make the function include a last range that includes it

	Parameters

	
	intervals (intervals) – iterable where each element is a closed range
(tuple)

	end (int [https://docs.python.org/3/library/functions.html#int]) – if the end of the complement intervals is supposed to be
outside the last range.

	Returns

	the list of intervals that complement the ones passed.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> complement_ranges([(1, 10), (11, 20), (25, 30)], end=100)
[(21, 24), (31, 100)]
>>> complement_ranges([(1, 10), (11, 20), (25, 30)])
[(21, 24)]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)])
[]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)], end=100)
[(21, 100)]

	
mgkit.utils.common.deprecated(func)

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.

from https://wiki.python.org/moin/PythonDecoratorLibrary

	
mgkit.utils.common.range_intersect(start1, end1, start2, end2)

	
New in version 0.1.13.

Given two ranges in the form (start, end), it returns the range
that is the intersection of the two.

	Parameters

	
	start1 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the first range

	end1 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the first range

	start2 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the second range

	end2 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the second range

	Returns

	returns a tuple with the start and end position for
the intersection of the two ranges, or None if the intersection is
empty

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
mgkit.utils.common.range_substract(start1, end1, start2, end2)

	

	
mgkit.utils.common.ranges_length(ranges)

	
New in version 0.1.12.

Given an iterable where each element is a range, a tuple whose elements
are numbers with the first being less than or equal to the second, the
function sums the lengths of all ranges.

Warning

it’s supposed to be used on intervals that were first passed to
functions like union_ranges(). If values overlap, there the sum
will be wrong

	Parameters

	ranges (iterable) – each element is a tuple like (1, 10)

	Returns

	sum of all ranges lengths

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mgkit.utils.common.union_range(start1, end1, start2, end2)

	
New in version 0.1.12.

Changed in version 0.3.1: changed behaviour, since the intervals are meant to be closed

If two numeric ranges overlap, it returns the new range, otherwise None is
returned. Works on both int and float numbers, even mixed.

	Parameters

	
	start1 (numeric) – start of range 1

	end1 (numeric) – end of range 1

	start2 (numeric) – start of range 2

	end2 (numeric) – end of range 2

	Returns

	union of the ranges or None if the ranges don’t
overlap

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or None [https://docs.python.org/3/library/constants.html#None])

Example

>>> union_range(10, 13, 1, 10)
(1, 13)
>>> union_range(1, 10, 11, 13)
(1, 13)
>>> union_range(1, 10, 12, 13)
None

	
mgkit.utils.common.union_ranges(intervals)

	
New in version 0.3.1.

From a list of ranges, assumed to be closed, performs a union of all
elements.

	Parameters

	intervals (intervals) – iterable where each element is a closed range
(tuple)

	Returns

	the list of ranges that are the union of all elements passed

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 17), (18, 20)])
[(1, 20)]
>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 14), (18, 20)])
[(1, 14), (18, 20)]

 mgkit.utils.dictionary module

mgkit.utils.dictionary module

Dictionary utils

	
class mgkit.utils.dictionary.HDFDict(file_name, table, cast=<type 'int'>, cache=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Changed in version 0.3.3: added cache in __init__

New in version 0.3.1.

Used a table in a HDFStore (from pandas) as a dictionary. The table must be
indexed to perform well. Read only.

Note

the dictionary cannot be modified and exception:ValueError will be
raised if the table is not in the file

	
mgkit.utils.dictionary.apply_func_to_values(dictionary, func)

	
New in version 0.1.12.

Assuming a dictionary whose values are iterables, func is applied to each
element of the iterable, retuning a set of all transformed elements.

	Parameters

	
	dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are iterables

	func (func) – function to apply to the dictionary values

	Returns

	dictionary with transformed values

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class mgkit.utils.dictionary.cache_dict_file(iterator, skip_lines=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.3.0.

Used to cache the result of a function that yields a tuple (key and value).
If the value is found in the internal dictionary (as the class behave), the
correspondent value is returned, otherwise the iterator is advanced until
the key is found.

Example

>>> from mgkit.io.blast import parse_accession_taxa_table
>>> i = parse_accession_taxa_table('nucl_gb.accession2taxid.gz', key=0)
>>> d = cache_dict_file(i)
>>> d['AH001684']
4400

	
next()

	

	
mgkit.utils.dictionary.combine_dict(keydict, valuedict)

	Combine two dictionaries when the values of keydict are iterables. The
combined dictionary has the same keys as keydict and the its values are
sets containing all the values associated to keydict values in valuedict.

key1 -> [v1, v2, .., vN]

v1 -> [u1, u2, .., uN]
v2 -> [t1, t2, .., tN]

Resulting dictionary will be

key1->{u1, u2, .., uN}

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.combine_dict_one_value(keydict, valuedict)

	Combine two dictionaries by the value of the keydict is used as a key in
valuedict and the resulting dictionary is composed of keydict keys and
valuedict values.

Same as comb_dict(), but each value in keydict is a single element
that is key in valuedict.

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.filter_nan(ratios)

	Returns a dictionary with the NaN values taken out

	
mgkit.utils.dictionary.filter_ratios_by_numbers(ratios, min_num)

	Returns from a dictionary only the items for which the length of the
iterables that is the value of the item, is equal or greater of min_num.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary key->list

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of elements in the value iterable

	Return dict

	filtered dictionary

	
mgkit.utils.dictionary.find_id_in_dict(s_id, s_dict)

	Finds a value ‘s_id’ in a dictionary in which the values are iterables.
Returns a list of keys that contain the value.

	Parameters

	
	s_id (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – element to look for in the dictionary’s values

	d (object [https://docs.python.org/3/library/functions.html#object]) – dictionary to search in

	Return list

	list of keys in which d was found

	
mgkit.utils.dictionary.link_ids(id_map, black_list=None)

	Given a dictionary whose values (iterables) can be linked back to other
keys, it returns a dictionary in which the keys are the original keys and
the values are sets of keys to which they can be linked.

key1->[v1, v2]
key2->[v3, v4]
key3->[v2, v4]

Becomes:

key1->[key1, key3]
key2->[key3]
key3->[key1, key2]

	Parameters

	
	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of keys to link

	black_list (iterable) – iterable of values to skip in making the links

	Return dict

	linked dictionary

	
mgkit.utils.dictionary.merge_dictionaries(dicts)

	
New in version 0.3.1.

Merges keys and values from a list/iterable of dictionaries. The resulting
dictionary’s values are converted into sets, with the assumption that the
values are one of the following: float, str, int, bool

	
mgkit.utils.dictionary.reverse_mapping(map_dict)

	Given a dictionary in the form: key->[v1, v2, .., vN], returns a dictionary
in the form: v1->[key1, key2, .., keyN]

	Parameters

	map_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to reverse

	Return dict

	reversed dictionary

	
mgkit.utils.dictionary.split_dictionary_by_value(value_dict, threshold, aggr_func=<function median>, key_filter=None)

	Splits a dictionary, whose values are iterables, based on a threshold:

	one in which the result of aggr_func is lower than the threshold
(first)

	one in which the result of aggr_func is equal or greater than the
threshold (second)

	Parameters

	
	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to be splitted

	threshold (number) – must be comparable to threshold

	aggr_func (func) – function used to aggregate the dictionary values

	key_filter (iterable) – if specified, only these key will be in the
resulting dictionary

	Returns

	two dictionaries

 mgkit.utils.sequence module

mgkit.utils.sequence module

Module containing functions related to sequence data

Note

For those functions without a docstring, look at the same with a
underscore (‘_’) prepended.

	
class mgkit.utils.sequence.Alignment(seqs=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple alignment class

	
add_seq(name, seq)

	Add a sequence to the alignment

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	
add_seqs(seqs)

	Add sequences to the alignment

	Parameters

	seqs (iterable) – iterable that returns (name, seq)

	
get_consensus(nucl=True)

	
Changed in version 0.1.16: added nucl parameter

The consensus sequence is constructed by checking the nucleotide that
has the maximum number of counts for each position in the alignment.

	Parameters

	nucl (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the alignment is nucleotidic

	Returns

	consensus sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_position(pos)

	Get all characters at a position

	Parameters

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position to return (0-based)

	Return str

	all characters occuring at the position

	
get_seq_len()

	Get the length of the alignment

	
get_snps(ref_seq=None, full_size=False)

	A SNP is called for the nucleotide that has the most counts among the
ones that differ in the each site of the alignment. If two nucleotides
have the same maximum count, one is randomly chosen.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence can be provided, if None, a
consensus sequence is produced for the alignment

	full_size (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a tuple is returned for each position in
the alignment. If there is no SNP at a position the value for the
SNP is None

	Return list

	a list of tuples (position, SNP)

	
mgkit.utils.sequence._get_kmers(seq, k)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a kmer of size k

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	k (int [https://docs.python.org/3/library/functions.html#int]) – kmer size

	Yields

	str – a portion of seq, of size k with a step of 1

	
mgkit.utils.sequence._sequence_signature(seq, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Returns the signature of a sequence, based on a kmer length, over a sliding
window. Each sliding window signature is placed in order into a list, with
each element being a collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instance whose keys are
the kmer found in that window.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to get the signature

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window()

	Returns

	a list of collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instances, for each
window used

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.utils.sequence._signatures_matrix(seqs, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Return a matrix (pandas.DataFrame) where the columns are the kmer found in
all sequences seqs and the rows are the a MultiIndex with the first level
being the sequnce name and the second the index of the sliding window for
which a signature was computed.

	Parameters

	
	seqs (iterable) – iterable that yields a tuple, with the first element
being the sequence name and the second the sequence itself

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window(), defaults to half of
the window size

	Returns

	a DataFrame where the columns are the kmers and the
rows are the signatures of each contigs/windows.

	Return type

	pandas.DataFrame

	
mgkit.utils.sequence._sliding_window(seq, size, step=None)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a subsequence of size
size, with a step of step.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequnece

	size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window

	step (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – the step to use in the sliding window. If None,
half of the sequence length is used

	Yields

	str – a subsequence of size size and step step

	
mgkit.utils.sequence.calc_n50(seq_lengths)

	Calculate the N50 statistics for a numpy.array of sequence
lengths.

The algorithm finds in the supplied array the element (contig length) for
which the sum all contig lengths equal or greater than it is equal to half
of all assembled base pairs.

	Parameters

	seq_lengths (array) – an instance of a numpy array containing the
sequence lengths

	Return int

	the N50 statistics value

	
mgkit.utils.sequence.check_snp_in_seq(ref_seq, pos, change, start=0, trans_table=None)

	Check a SNP in a reference sequence if it is a synonymous or non-synonymous
change.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	pos (int [https://docs.python.org/3/library/functions.html#int]) – SNP position - it is expected to be a 1 based index

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide change occuring at pos

	start (int [https://docs.python.org/3/library/functions.html#int]) – the starting position for the coding region - 0 based
index

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return bool

	True if it is a synonymous change, False if non-synonymous

	
mgkit.utils.sequence.convert_aa_to_nuc_coord(start, end, frame=0)

	Converts aa coordinates to nucleotidic ones. The coordinates must be from
‘+’ strand. For the ‘-‘ strand, use reverse_aa_coord() first.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation (lowest number)

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation (highest number)

	frame (int [https://docs.python.org/3/library/functions.html#int]) – frame of the AA translation (0, 1 or 2)

	Returns

	the first element is the converted start and the second
element is the converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

the coordinates are assumed to be 1-based indices

	
mgkit.utils.sequence.extrapolate_model(quals, frac=0.5, scale_adj=0.5)

	
New in version 0.3.3.

Extrapolate a quality model from a list of qualities. It uses internally
a LOWESS as the base, which is used to estimate the noise as a normal
distribution.

	Parameters

	
	quals (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of arrays of qualities, sorted by position in the
corresponding sequence

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the data used for the LOWESS fit (uses
statsmodels)

	scale_adj (float [https://docs.python.org/3/library/functions.html#float]) – value by which the scale of the normal distribution
will be multiplied. Defaults to halving the scale

	Returns

	the first element is the qualities fit with a LOWESS, the second
element is the distribution

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_contigs_info(file_name, pp=False)

	
Changed in version 0.2.4: file_name can be a dict name->seq or a list of sequences

New in version 0.2.1.

Given a file name for a fasta file with sequences, a dictionary of
name->seq, or a list of sequences, returns the following information in a
tuple, or a string if pp is True:

	number of sequences

	total base pairs

	max length

	min length

	average length

	N50 statistic

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file to open

	pp (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a formatted string is returned

	Returns

	the returned value depends on the value of pp, if True a
formatted string is returned, otherwise the tuple with all values is.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_seq_expected_syn_count(seq, start=0, syn_matrix=None)

	Calculate the expected number of synonymous and non-synonymous changes in a
nucleotide sequence. Assumes that the sequence is already in the correct
frame and its length is a multiple of 3.

	Parameters

	
	seq (iterable) – nucleotide sequence (uppercase chars)

	start (int [https://docs.python.org/3/library/functions.html#int]) – frame of the sequence

	syn_matrix (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that contains the expected number of
changes for a codon, as returned by get_syn_matrix()

	Return tuple

	tuple with counts of expected counts (syn, nonsyn)

	
mgkit.utils.sequence.get_seq_number_of_syn(ref_seq, snps, start=0, trans_table=None)

	Given a reference sequence and a list of SNPs, calculates the number of
synonymous and non-synonymous SNP.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	snps (iterable) – list of tuples (position, SNP) - zero based index

	start (int [https://docs.python.org/3/library/functions.html#int]) – the frame used for the reference {0, 1, 2}

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return tuple

	synonymous and non-synonymous counts

	
mgkit.utils.sequence.get_syn_matrix(trans_table=None, nuc_list=None)

	Returns a dictionary containing the expected count of synonymous and
non-synonymous changes that a codon can have if one base is allowed to
change at a time.

There are 9 possible changes per codon.

	Parameters

	
	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a tranlation table, defaults to
seq_utils.TRANS_TABLE

	nuc_list (iterable) – a list of nucleotides in which a base can change,
default to the keys of seq_utils.REV_COMP

	Return dict

	returns a dictionary in which for each codon a dictionary
{‘syn’: 0, ‘nonsyn’: 0} holds the number of expected changes

	
mgkit.utils.sequence.get_syn_matrix_all(trans_table=None)

	Same as get_syn_matrix() but a codon can change in any of the ones
included in trans_table.

There are 63 possible changes per codon.

	
mgkit.utils.sequence.get_variant_sequence(seq, *snps)

	
New in version 0.1.16.

Return a sequence changed in the positions requested.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a sequence

	*snps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – each argument passed is a tuple with the first element
as a position in the sequence (1-based index) and the second
element is the character to substitute in the sequence

	Returns

	string with the changed characters

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> get_variant_sequence('ACTGATATATGCGCGCATCT', (1, 'C'))
'CCTGNTGTATGCGCGCATCT'

Note

It is used for nucleotide sequences, but it is valid to use any string

	
mgkit.utils.sequence.make_reverse_table(tbl=None)

	Makes table to reverse complement a sequence by reverse_complement().
The table used is the complement for each nucleotide, defaulting to
REV_COMP

	
mgkit.utils.sequence.put_gaps_in_nuc_seq(nuc_seq, aa_seq, trim=True)

	Match the gaps in an amino-acid aligned sequence to its original nucleotide
sequence. If the nucleotide sequence is not a multiple of 3, the trim
option by default trim those bases from the output.

	Parameters

	
	nuc_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – original nucleotide sequence

	aa_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – aligned amino-acid sequence

	trim (bool [https://docs.python.org/3/library/functions.html#bool]) – if True trim last nucleotide(s)

	Return str

	gapped nucleotide sequence

	
mgkit.utils.sequence.qualities_model_constant(length=150, scale=1, loc=35)

	
New in version 0.3.3.

Model with constant quality

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.qualities_model_decrease(length=150, scale=None, loc=35)

	
New in version 0.3.3.

The model is a decreasing one, from 35 and depends on the length of the
sequence.

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.random_qualities(n=1, length=150, model=None)

	
New in version 0.3.3.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of quality arrays to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the quality array

	model (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a tuple specifying the qualities and error distribution,
if None qualities_model_decrease() is used

	Yields

	numpy.array – numpy array of qualities, with the maximum value of 40

	
mgkit.utils.sequence.random_sequences(n=1, length=150, p=None)

	
New in version 0.3.3.

Returns an iterator of random squences, where each nucleotide probability
can be customised in the order (A, C, T, G)

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of each sequence

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple with the probability of a nucleotide to occur, in the
order A, C, T, G

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.random_sequences_codon(n=1, length=150, codons=['CTT', 'TAG', 'ACA', 'AAA', 'ATC', 'AAC', 'ATA', 'AGG', 'CCT', 'ACT', 'AGC', 'AAG', 'AGA', 'CAT', 'AAT', 'ATT', 'CTG', 'CTA', 'CTC', 'CAC', 'TGG', 'CAA', 'AGT', 'CCA', 'CCG', 'CCC', 'TAT', 'GGT', 'TGT', 'CGA', 'CAG', 'TCT', 'GAT', 'CGG', 'TTT', 'TGC', 'GGG', 'TGA', 'GGA', 'TAA', 'ACG', 'TAC', 'TTC', 'TCG', 'TTA', 'TTG', 'TCC', 'ACC', 'TCA', 'GCA', 'GTA', 'GCC', 'GTC', 'GGC', 'GCG', 'GTG', 'GAG', 'GTT', 'GCT', 'GAC', 'CGT', 'GAA', 'ATG', 'CGC'], p=None, frame=None)

	
New in version 0.3.3.

Returns an iterator of nucleotidic sequences, based on a defined genetic
code (passed as parameter, defaults to the universal one). The sequence if
first sampled with replacement from the codon list, with a number of codons
that covers the length chosen plus an additional one to allow a frame shift
as set by frame

Note

If the probability (for each codon) are supplied, the number of
sequences required to match those probabilities within a 10% margin of
error is of at least 10.000 sequences, for 5% at leas 100.000

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the sequences

	codons (iterable) – codons used when generating the sequences

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – probability of each codon occurence, in the same order as
codons

	frame (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – used to define a specific frame shift occuring in
the sequence (0 to 2) or a random one (if None)

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.reverse_aa_coord(start, end, seq_len)

	Used to reverse amino-acid coordinates when parsing an AA annotation on
the - strand. Used when the BLAST or HMMER annotations use AA sequences.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – aa sequence length

	Returns

	reversed (from strand - to strand +) coordinates. The first
element is the converted start and the second element is the
converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

	start and end are 1-based indices

	
mgkit.utils.sequence.reverse_complement(seq, tbl='\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+, -./0123456789:;<=>?@TBGDEFCHIJKLMNOPQRSAUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff')

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table returned by make_reverse_table()

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.reverse_complement_old(seq, tbl=None)

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of complement bases, like REV_COMP

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.sequence_composition(sequence, chars=('A', 'C', 'T', 'G'))

	
New in version 0.1.13.

Returns the number of occurences of each unique character in the sequence

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	chars (iterable, None [https://docs.python.org/3/library/constants.html#None]) – iterable of the chars to test, default to
(A, C, T, G). if None checks all unique characters in the sequencce

	Yields

	tuple – the first element is the nucleotide and the second is the number
of occurences in sequence

	
mgkit.utils.sequence.sequence_gc_content(sequence)

	
Changed in version 0.3.3: in case of ZeroDivisionError returns .5

New in version 0.1.13.

Calculate GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC content

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.sequence_gc_ratio(sequence)

	
New in version 0.1.13.

Calculate GC ratio information for a sequence. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC ratio, or numpy.nan if G = C = 0

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.translate_sequence(sequence, start=0, tbl=None, reverse=False)

	Translate a nucleotide sequence in an amino acid one.

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to translate, it’s expected to be all caps

	start (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the translation to start

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, reverse_complement() will be called and
the returned sequence translated

	Return str

	the translated sequence

 mgkit.utils.trans_tables module

mgkit.utils.trans_tables module

The module contains translation tables

Not all genetic codes are included, taken from:
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG2

 mgkit.workflow package

mgkit.workflow package

Submodules

	mgkit.workflow.add_gff_info module
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	mgkit.workflow.blast2gff module
	Uniprot

	BlastDB

	Changes

	mgkit.workflow.extract_gff_info module
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	mgkit.workflow.fasta_utils module
	split command

	translate command

	uid command

	Changes

	mgkit.workflow.fastq_utils module
	Commands

	Changes

	mgkit.workflow.filter_gff module
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	mgkit.workflow.hmmer2gff module
	Changes

	mgkit.workflow.json2gff module
	mongodb command

	mgkit.workflow.sampling_utils module
	Resampling Utilities
	sample command

	sample_stream command

	sync command

	rand_seq command

	Changes

	mgkit.workflow.snp_parser module
	Changes

	mgkit.workflow.taxon_utils module
	Last Common Ancestor (lca and lca_line)
	Krona Output

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	mgkit.workflow.utils module

Module contents

Workflows used to script the library - execute bits of the pipelines supported

 mgkit.workflow.add_gff_info module

mgkit.workflow.add_gff_info module

Add more information to GFF annotations: gene mappings, coverage, taxonomy,
etc..

Uniprot Command

If the gene_id of an annotation is a Uniprot ID, the script queries Uniprot
for the requested information. At the moment the information that can be added
is the taxon_id, taxon_name, lineage and mapping to EC, KO, eggNOG IDs.

It’s also possible to add mappings to other databases using the -m option
with the correct identifier for the mapping, which can be found at this page [http://www.uniprot.org/faq/28]; for example if it’s we want to add the
mappings of uniprot IDs to BioCyc, in the abbreviation column of the
mappings we find that it’s identifier is REACTOME_ID, so we pass
-m REACTOME to the script (leaving _ID out). Mapped IDs are separated by
commas.

The taxonomy IDs are not overwritten if they are found in the annotations, the
-f is provided to force the overwriting of those values.

See also MGKit GFF Specifications for more informations about the GFF specifications
used.

Note

As the script needs to query Uniprot a lot, it is recommended to split
the GFF in several files, so an error in the connection doesn’t waste time.

However, a cache is kept to reduce the number of connections

Coverage Command

Adds coverage information from BAM alignment files to a GFF file, using the
function mgkit.align.add_coverage_info(), the user needs to supply for
each sample a BAM file, using the -a option, whose parameter is in the form
sample,samplealg.bam. More samples can be supplied adding more -a
arguments.

Hint

As an example, to add coverage for sample1, sample2 the command line
is:

add-gff-info coverage -a sample1,sample1.bam -a sample2,sample2.bam \
inputgff outputgff

A total coverage for the annotation is also calculated and stored in the
cov attribute, while each sample coverage is stored into sample_cov as per
MGKit GFF Specifications.

Adding Coverage from samtools depth

The cov_samtools allows the use of the output of samtools depth
command. The -aa options must be used to pass information about all base
pairs and sequences coverage in the BAM/SAM file. The command work similarly to
coverage, accepting compressed depth files as well. If only one depth
file is passed and no sample is passed, the attribute in the GFF will be cov,
otherwise the attribute will be sample1_cov, sample2_cov, etc.

To create samtools depth files, this command must be used:

$ samtools depth -aa bam_file

Uniprot Offline Mappings

Similar to the uniprot command, it uses the idmapping [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz]
file provided by Uniprot, which speeds up the process of adding mappings and
taxonomy IDs from Uniprot gene IDs. It’s not possible tough to add EC
mappings with this command, as those are not included in the file.

Kegg Information

The kegg command allows to add information to each annotation. Right now the
information that can be added is restricted to the pathway(s) (reference KO) a
KO is part of and both the KO and pathway(s) descriptions. This information is
stored in keys starting with ko_.

Expected Aminoacidic Changes

Some scripts, like snp_parser - SNPs analysis, require information about the expected
number of synonymous and non-synonymous changes of an annotation. This can be
done using mgkit.io.gff.Annotation.add_exp_syn_count() by the user of the
command exp_syn of this script. The attributes added to each annotation are
explained in the MGKit GFF Specifications

Adding Count Data

Count data on a per-sample basis can be added with the counts command. The
accepted inputs are from HTSeq-count and featureCounts. The ouput produced by
featureCounts, is the one from using its -f option must be used.

This script accept by default a tab separated file, with a uid in the first
column and the other columns are the counts for each sample, in the same order
as they are passed to the -s option. To use the featureCounts file format,
this script -e option must be used.

The sample names must be provided in the same order as the columns in the input
files. If the counts are FPKMS the -f option can be used.

Adding Taxonomy from a Table

There are cases where it may needed or preferred to add the taxonomy from a
gene_id already provided in the GFF file. For such cases the addtaxa
command can be used. It works in a similar way to the taxonomy command, only
it expect three different type of inputs:

	GI-Taxa table from NCBI (e.g. gi_taxid_nucl.dmp,)

	tab separated table

	dictionary

	HDF5

The first two are tab separated files, where on each line, the first column is
the gene_id that is found in the first column, while the second if the
taxon_id.

The third option is a serialised Python dict/hash table, whose keys are the
gene_id and the value is that gene corresponding taxon_id. The serialised
formats accepted are msgpack, json and pickle. The msgpack module must be
importable. The option to use json and msgpack allow to integrate this script
with other languages without resorting to a text file.

The last option is a HDF5 created using the to_hdf command in
taxon-utils - Taxonomy Utilities. This requires pandas installed and pytables and it
provides faster lookup of IDs in the table.

While the default is to look for the gene_id attribute in the GFF annotation,
another attribute can be specified, using the -gene-attr option.

Note

the dictionary content is loaded after the table files and its keys and
corresponding values takes precedence over the text files.

Warning

from September 2016 NCBI will retire the GI. In that case the same
kind of table can be built from the nucl_gb.accession2taxid.gz file
The format is different, but some information can be found in
mgkit.io.blast.parse_accession_taxa_table()

Adding information from Pfam

Adds the Pfam description for the annotation, by downloading the list from
Pfam.

The options allow to specify in which attribute the ID/ACCESSION is stored
(defaults to gene_id) and which one between ID/ACCESSION is the value of that
attribute (defaults to ID). if no description is found for the family, a
warning message is logged.

Changes

Changed in version 0.3.4: removed the taxonomy command, since a similar result can be obtained with
taxon-utils lca and add-gff-info addtaxa. Removed eggnog command and
added option to verbose the logging in cov_samtools (now is quiet), also
changed the interface

Changed in version 0.3.3: changed how addtaxa -a works, to allow the use of seq_id as key to
add the taxon_id

Changed in version 0.3.0: added cov_samtools command, –split option to exp_syn, -c option to
addtaxa. kegg now does not skip annotations when the attribute is not
found.

Changed in version 0.2.6: added skip-no-taxon option to addtaxa

Changed in version 0.2.5: if a dictionary is supplied to addtaxa, the GFF is not preloaded

Changed in version 0.2.3: added pfam command, renamed gitaxa to addtaxa and made it general

Changed in version 0.2.2: added eggnog, gitaxa and counts command

Changed in version 0.2.1.

	added -d to uniprot command

	added cache to uniprot command

	added kegg command (cached)

Changed in version 0.1.16: added exp_syn command

Changed in version 0.1.15: taxonomy command -b option changed

Changed in version 0.1.13.

	added –force-taxon-id option to the uniprot command

	added coverage command

	added taxonomy command

	added unipfile command

New in version 0.1.12.

	
mgkit.workflow.add_gff_info.add_uniprot_info(annotations, email, force_taxon_id, taxon_id, lineage, eggnog, enzymes, kegg_orthologs, protein_names, mapping, info_cache)

	

	
mgkit.workflow.add_gff_info.load_featurecounts_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.load_htseq_count_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.parse_hdf5_arg(ctx, param, values)

	

	
mgkit.workflow.add_gff_info.split_sample_alg(ctx, param, values)

	Split sample/alignment option

 mgkit.workflow.blast2gff module

mgkit.workflow.blast2gff module

Blast output conversion in GFF requires a BLAST+ tabular format which can be
obtained by using the –outfmt 6 option with the default columns, as
specified in mgkit.io.blast.parse_blast_tab(). The script can get data
from the standard in and ouputs GFF lines on the standard output by default.

Uniprot

The Function mgkit.io.blast.parse_uniprot_blast() is used, which filters
BLAST hits based on bitscore and adds by default a db attribute to the
annotation with the value UNIPROT-SP, indicating that the SwissProt db is
used and a dbq attribute with the value 10. The feature type used in the GFF
is CDS.

 blockdiag

 BLAST+

 parse_uniprot_blast

 GFF

BlastDB

If a BlastDB, such as nt or nr was used, the blastdb command offers
some quick defaults to parse BLAST results.

It now includes options to control the way the sequence header are formatted.
Options to change the separator used, as well as the column used as gene_id.
This was added because at the moment the GI identifier (the second column in
the header) is used, but it’s being phased out in favour of the embl/gb/dbj
(right now the fourth column in the header). This should easy the transition to
the new format and makes it easier to adapt an older pipeline/blastdb to newer
files (like the ID to TAXA files).

The header from the a ncbi-nt header looks like this:

gi|160361034|gb|CP000884.1

This is the default output accepted by the blastdb command. The fields are
separated by | (pipe) and the GI is used (–gene-index 1, since internally
the string is split by the separator and the second element is take - lists
indices are 0-based in Python). This output uses the following options:

--header-sep '|' --gene-index 1

Notice the single quotes to pass the pipe symbol, since bash would interpret
it as pipeing to the next coommand otherwise. This is the default.

In case, for the same header, we want to use the gb identifier, the only
option to be specified is:

--gene-index 3

This will get the fourth element of the header (since we’re splitting by pipe).

As in the uniprot command, the gene_id can be set to use the whole header,
using the -n option. Useful in case the BLAST db that was used was custom
made. While pipe is used in major databases, it was made the default, by if the
db used has different conventions the separator can be changed. There’s also
the options of later changing the gene_id in the output GFF if necessary.

Changes

Changed in version 0.3.4: using click instead of argparse

Changed in version 0.2.6: added -r option to blastdb

Changed in version 0.2.5: added more options to give user control to the blastdb command

New in version 0.2.3: added –fasta-file option, added more data from a blsat hit

New in version 0.2.2: added blastdb command

Changed in version 0.2.1: added -ft option

Changed in version 0.1.13: added -n and -k parameters to uniprot command

New in version 0.1.12.

	
mgkit.workflow.blast2gff.load_fasta_file(file_name)

	

	
mgkit.workflow.blast2gff.validate_params(ctx, param, values)

	

 mgkit.workflow.extract_gff_info module

mgkit.workflow.extract_gff_info module

Extract information from GFF files

sequence command

Used to extract the nucleotidic sequences from GFF annotations. It requires the
fasta file containing the sequences referenced in the GFF seq_id attribute
(first column of the raw GFF).

The sequnces extract have as identifier the uid stored in the GFF file and by
default the sequnece is not reverse complemented if the annotation is on the
- strand, but this can be changed by using the -r option.

The sequences are wrapped at 60 characters, as per FASTA specs, but this
behavior can be disabled by specifing the -w option.

Warning

The reference file is loaded in memory

dbm command

Creates a dbm DB using the semidbm package. The database can then be loaded
using mgkit.db.dbm.GFFDB

mongodb command

Outputs annotations in a format supported by MongoDB. More information about it
can be found in mgkit.db.mongo

gtf command

Outputs annotations in the GTF format

split command

Splits a GFF file into smaller chunks, ensuring that all of a sequence
annotations are in the same file.

cov command

Calculate annotation coverage for each contig in a GFF file. The command can be
run as strand specific (not by default) and requires the reference file to
which the annotation refer to. The output file is a tab separated one, with the
first column being the sequence name, the second is the strand (+, -, or NA if
not strand specific) and the third is the percentage of the sequence covered by
annotations.

Warning

The GFF file is assumed to be sorted, by sequence or sequence-strand if
wanted. The GFF file can be sorted using sort -s -k 1,1 -k 7,7 for strand
specific, or sort -s -k 1,1 if not strand specific.

Changes

Changed in version 0.3.4: using click instead of argparse, renamed split command –json to
–json-out

Changed in version 0.3.1: added cov command

Changed in version 0.3.0: added –split option to sequence command

Changed in version 0.2.6: added split command, –indent option to mongodb

Changed in version 0.2.3: added –gene-id option to gtf command

New in version 0.2.2: added gtf command

New in version 0.2.1: dbm and mongodb commands

New in version 0.1.15.

 mgkit.workflow.fasta_utils module

mgkit.workflow.fasta_utils module

New in version 0.3.0.

Scripts that includes some functionality to help use FASTA files with the
framework

split command

Used to split a fasta file into smaller fragments

translate command

Used to translate nucleotide sequences into amino acids.

uid command

Used to change a FASTA file headers to a unique ID. A table (tab separated)
with the changes made can be kept, using the –table option.

Changes

New in version 0.3.0.

Changed in version 0.3.1: added translate and uid command

Changed in version 0.3.4: ported to click

	
mgkit.workflow.fasta_utils.load_trans_table(table_name)

	Loads translation table

	
mgkit.workflow.fasta_utils.translate_seq(name, seq, trans_table)

	Tranlates sequence into the 6 frames

 mgkit.workflow.fastq_utils module

mgkit.workflow.fastq_utils module

Commands

	Interleave/deinterleave paired-end fastq files.

	Converts to FASTA

	sort 2 files to sync the headers

Changes

Changed in version 0.3.4: moved to use click, internal fastq parsing, removed rand command

Changed in version 0.3.1: added stdin/stdout defaults for some commands

Changed in version 0.3.0: added convert command to FASTA

	
mgkit.workflow.fastq_utils.report_counts(count, wcount, counter=None)

	Logs the status

 mgkit.workflow.filter_gff module

mgkit.workflow.filter_gff module

Filters GFF annotations in different ways.

Value Filtering

Enables filtering of GFF annotations based on the the values of attributes of a
GFF annotation. The filters are based on equality of numbers (internally
converted into float) and strings, a string contained in the value of an attribute
less or greater than are included as well. The length of annotation has the
attribute length and can be tested.

Overlap Filtering

Filters overlapping annotations using the functions
mgkit.filter.gff.choose_annotation() and
mgkit.filter.gff.filter_annotations(), after the annotations are grouped
by both sequence and strand. If the GFF is sorted by sequence name and strand,
the -t can be used to make the filtering use less memory. It can be sorted in
Unix using sort -s -k 1,1 -k 7,7 gff_file, which applies a stable sort using
the sequence name as the first key and the strand as the second key.

Note

It is also recommended to use:

export LC_ALL=C

To speed up the sorting

 blockdiag

 sort

 group_annotations

 GFF

 parse_gff

 filter_annotati
 ons

 Filtered Annotations

The above digram describes the internals of the script.

The annotations needs first to be grouped by seq_id and strand, forming a group
that can be then be passed to mgkit.filter.gff.filter_annotations().
This function:

	sort annotations by bit score, from the highest to the lowest

	loop over all combination of N=2 annotations:

	choose which of the two annotations to discard if they overlap for a
the required amount of bp (defaults to 100bp)

	in which case, the preference is given to the db quality first, than
the bit score and finally the lenght of annotation, the one with the
highest values is kept

While the default behaviour is the same, now it is posible to decided the
function used to discard one the two annotations. It is possible to use the
-c argument to pass a string that defines the function. The string passed must
start with or without a +. Using + translates into the builtin function
max while no + translates into min from the second character on, any
number of attributes can be used, separated by commas. The attributes, however,
must be one of the properties defined in mgkit.io.gff.Annotation,
bitscore that returns the value converted in a float. Internally the
attributes are stored as strings, so for attributes that have no properties in
the class, such as evalue, the float builtin is applied.

The tuples built for both annotations are then passed to the comparison
function to be selected and the value returned by it is discarded. The
order of the elements in the string is important to define the priority
given to each element in the comparison and the leftmost one has the
highesst priority.

Examples of function strings:

	-dbq,bitscore,length becomes max((ann1.dbq, ann1.bitscore, ann1.length),
(ann2.dbq, ann2.bitscore, ann2.length) - This is default and previously
only choice

	-bitscore,length,dbq uses the same elements but gives lowest priority
to dbq

	+evalue: will discard the annotation with the highest evalue

Per Sequence Values

The sequence command allows to filter on a per sequence basis, using
functions such as the median, quantile and mean on attributes like evalue,
bitscore and identity. The file can be passed as sorted already, saving memory
(like in the overlap command), but it’s not needed to sort the file by strand,
only by the first column.

Coverage Filtering

The cov command calculates the coverage of annotations as a measure of the
percentage of each reference sequence length. A minimum coverage percentage can
be used to keep the annotations of sequences that have a greater or equal
coverage than the specified one.

Changes

New in version 0.1.12.

Changed in version 0.1.13: added –sorted option

Changed in version 0.2.0: changed option -c to accept a string to filter overlap

Changed in version 0.2.5: added sequence command

Changed in version 0.2.6: added length as attribute and min/max, and ge is the default
comparison for command sequence, –sort-attr to overlap

Changed in version 0.3.1: added –num-gt and –num-lt to values command, added cov command

Changed in version 0.3.4: moved to use click for argument parsing reworked the values, sequence
commands

	
mgkit.workflow.filter_gff.filter_eq(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_gt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.filter_in(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_lt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.find_comparison(comparison)

	

	
mgkit.workflow.filter_gff.make_choose_func(values)

	Builds the function used to choose between two annotations.

	
mgkit.workflow.filter_gff.perseq_calc_threshold(annotations, attribute, function, func_arg=None)

	

	
mgkit.workflow.filter_gff.setup_filters(str_eq, str_in, num_eq, num_ge, num_le, num_gt, num_lt)

	

	
mgkit.workflow.filter_gff.validate_params(ctx, param, values, convert=<type 'str'>)

	

 mgkit.workflow.hmmer2gff module

mgkit.workflow.hmmer2gff module

Script to convert HMMER results files (domain table) to a GFF file, the name of
the profiles are expected to be now in the form
GENEID_TAXONID_TAXON-NAME(-nr) by default, but any other profile name is
accepted.

The profiles tested are those made from Kegg Orthologs, from the
download_profiles script. If the –no-custom-profiles options is used,
the script can be used with any profile name. The profile name will be used
for gene_id, taxon_id and taxon_name in the GFF file.

It is possible to use seuqnces not translated using mgkit, no information on
the frame is assumed, so this script can be used against a protein DB. For
example Uniprot can be searched for profiles, in which case the –no-frame
options must be used.

Note

for GENEID, old documentation points to KOID, it is the same

Warning

The compatibility with old data has been removed, meaning that old
experiments must use the scripts from those versions. It is possible to use
multiple environments, with virtualenv for this purpose. An examples is
given in Installation.

Changes

Changed in version 0.1.15: adapted to new GFF module and specs

Changed in version 0.2.1: added options to customise output and filters and old restrictions

Changed in version 0.3.1: added –no-frame option for non mgkit-translated proteins, sequence
headers are handled the same way as HMMER (truncated at the first space)

	
mgkit.workflow.hmmer2gff.get_aa_data(f_handle)

	Load aminoacid seuqnces used by HMMER.

	
mgkit.workflow.hmmer2gff.main()

	Main loop

	
mgkit.workflow.hmmer2gff.parse_domain_table_contigs(options)

	Parse the HMMER result file

	
mgkit.workflow.hmmer2gff.set_parser()

	Setup command line options

 mgkit.workflow.json2gff module

mgkit.workflow.json2gff module

Changed in version 0.3.4: using click instead of argparse

New in version 0.2.6.

This script converts annotations in JSON format that were created using MGKit
back into GFF annotations.

mongodb command

Annotations converted into MongoDB records with get-gff-info mongodb can be
converted back into a GFF file using this command. It can be useful to get a
GFF file as output from a query to a MongoDB instance on the command line.

For example:

mongoexport -d db -c test | json2gff mongodb

will convert all the annotations in the database db, collection test to
the standard out.

 mgkit.workflow.sampling_utils module

mgkit.workflow.sampling_utils module

New in version 0.3.1.

Resampling Utilities

sample command

This command samples from a Fasta or FastQ file, based on a probability defined
by the user (0.001 or 1 / 1000 by default, -r parameter), for a maximum number
of sequences (100,000 by default, -x parameter). By default 1 sample is
extracted, but as many as desired can be taken, by using the -n parameter.

The sequence file in input can be either be passed to the standard input or as
last parameter on the command line. By defult a Fasta is expected, unless the
-q parameter is passed.

The -p parameter specifies the prefix to be used, and if the output files can
be gzipped using the -z parameter.

sample_stream command

It works in the same way as sample, however the file is sampled only once and
the output is the stdout by default. This can be convenient if streams are a
preferred way to sample the file.

sync command

Used to keep in sync forward and reverse read files in paired-end FASTQ.
The scenario is that the sample command was used to resample a FASTQ file,
usually the forward, but we need the reverse as well. In this case, the resampled
file, called master is passed to the -m option and the input file is
the file that is to be synced (reverse). The input file is scanned until the same header is
found in the master file and when that happens, the sequence is written. The
next sequence is then read from the master file and the process is repeated until all
sequence in the master file are found in the input file. This implies having
the 2 files sorted in the same way, which is what the sample command does.

Note

the old casava format is not supported by this command at the moment, as
it’s unusual to find it in SRA or other repositories as well.

rand_seq command

Generate random FastA/Q sequences, allowing the specification of GC content and
number of sequences being coding or random. If the output format chosen is
FastQ, qualities are generated using a decreasing model with added noise. A
constant model can be specified instead with a switch. Parameters such GC,
length and the type of model can be infered by passing a FastA/Q file, with
the quality model fit using a LOWESS (using mgkit.utils.sequence.extrapolate_model()).
The noise in that case is model as the a normal distribution fitted from the
qualities along the sequence deviating from the fitted LOWSS and scaled back by
half to avoid too drastic changes in the qualities. Also the qualities are
clipped at 40 to avoid compatibility problems with FastQ readers. If inferred,
the model can be saved (as a pickle file) and loaded back for analysis

Changes

Changed in version 0.3.4: using click instead of argparse. Now *rand_seq can save and reload models

Changed in version 0.3.3: added sync, sample_stream and rand_seq commnads

	
mgkit.workflow.sampling_utils.compare_header(header1, header2, header_type=None)

	

	
mgkit.workflow.sampling_utils.infer_parameters(file_handle, fastq_bool, progress)

	

 mgkit.workflow.snp_parser module

mgkit.workflow.snp_parser module

This script parses results of SNPs analysis from any tool for SNP calling 1
and integrates them into a format that can be later used for other scripts in
the pipeline.

It integrates coverage and expected number of syn/nonsyn change and taxonomy
from a GFF file, SNP data from a VCF file.

Note

The script accept gzipped VCF files

	1

	GATK pipeline was tested, but it is possible to use samtools and
bcftools

Changes

Changed in version 0.2.1: added -s option for VCF files generated using bcftools

Changed in version 0.1.16: reworkked internals and removed SNPDat, syn/nonsyn evaluation is internal

Changed in version 0.1.13: reworked the internals and the classes used, including options -m and -s

	
mgkit.workflow.snp_parser.check_snp_in_set(samples, snp_data, pos, change, annotations, seq)

	Used by parse_vcf() to check if a SNP

	Parameters

	
	samples (iterable) – list of samples that contain the SNP

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.init_count_set(annotations)

	

	
mgkit.workflow.snp_parser.main()

	Main function

	
mgkit.workflow.snp_parser.parse_vcf(vcf_file, snp_data, min_reads, min_af, min_qual, annotations, seqs, options, line_num=100000)

	Parse VCF file counts synonymous and non-synonymous SNPs

	Parameters

	
	vcf_file (file) – file handle to a VCF file

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	min_reads (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of reads to accept a SNP

	min_af (float [https://docs.python.org/3/library/functions.html#float]) – minimum allele frequency to accept a SNP

	min_qual (int [https://docs.python.org/3/library/functions.html#int]) – minimum quality (Phred score) to accept a SNP

	annotations (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – annotations grouped by their reference sequence

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – reference sequences

	line_num (int [https://docs.python.org/3/library/functions.html#int]) – the interval in number of lines at which progress
will be printed

	
mgkit.workflow.snp_parser.save_data(output_file, snp_data)

	Pickle data structures to the disk.

	Parameters

	
	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – base name for pickle files

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.set_parser()

	Sets command line arguments parser

 mgkit.workflow.taxon_utils module

mgkit.workflow.taxon_utils module

The script contains commands used to access functionality related to
taxonomy, without the need to write ad-hoc code for functionality that
can be part of a workflow. One example is access to the the last common
ancestor function contained in the mgkit.taxon.

Last Common Ancestor (lca and lca_line)

These commands expose the functionality of
last_common_ancestor_multiple(), making it accessible via the command
line. They differ in the input file format and the choice of output files.

the lca command can be used to define the last common ancestor of contigs
from the annotation in a GFF file. The command uses the taxon_ids from all
annotations belonging to a contig/sequence, if they have a bitscore higher
or equal to the one passed (50 by default). The default output of the command
is a tab separated file where the first column is the contig/sequence name,
the taxon_id of the last common ancestor, its scientific/common name and its
lineage.

For example:

contig_21 172788 uncultured phototrophic eukaryote cellular organisms,environmental samples

If the -r is used, by passing the fasta file containing the nucleotide
sequences the output file is a GFF where for each an annotation for the full
contig length contains the same information of the tab separated file format.

The lca_line command accept as input a file where each line consist of a
list of taxon_ids. The separator for the list can be changed and it defaults to
TAB. The last common ancestor for all taxa on a line is searched. The ouput of
this command is the same as the tab separated file of the lca command, with
the difference that instead of the first column, which in this command becames
a list of all taxon_ids that were used to find the last common ancestor for
that line. The list of taxon_ids is separated by semicolon “;”.

Note

Both also accept the -n option, to report the config/line and the
taxon_ids that had no common ancestors. These are treated as errors and do
not appear in the output file.

Krona Output

New in version 0.3.0.

The lca command supports the writing of a file compatible with Krona. The
output file can be used with the ktImportText/ImportText.pl script included
with KronaTools [https://github.com/marbl/Krona/wiki]. Specifically, the
output from taxon_utils will be a file with all the lineages found (tab
separated), that can be used with:

$ ktImportText -q taxon_utils_ouput

Note the use of -q to make the script count the lineages. Sequences with no
LCA found will be marked as No LCA in the graph, the -n is not required.

Note

Please note that the output won’t include any sequence that didn’t have a
hit with the software used. If that’s important, the -kt option can be
used to add a number of Unknown lines at the end, to read the total
supplied.

Filter by Taxon

The filter command of this script allows to filter a GFF file using the
taxon_id attribute to include only some annotations, or exclude some. The
filter is based on the mgkit.taxon.is_ancestor function, and the
mgkit.filter.taxon.filter_taxon_by_id_list. It can also filter a table (tab
separated values) when the first element is an ID and the second is a taxon_id.
An example of a table of this sort is the output of the download-ncbi-taxa.sh
and download-uniprot-taxa.sh, where each accession of a database is associated
to a taxon_id.

Multiple taxon_id can be passed, either for inclusion or exclusion. If both
exclusion and inclusion is used, the first check is on the inclusion and then on
the exclusion. In alternative to passing taxon_id, taxon_names can be passed,
with values such as ‘cellular organisms’ that needs to be quoted. Example:

$ taxon-utils filter -i 2 -in archaea -en prevotella -t taxonomy.pickle in.gff out.gff

Which will keep only line that are from Bacteria (taxon_id=2) and exclude those
from the genus Prevotella. It will be also include Archaea.

Multiple inclusion and exclusion flags can be put:

$ taxon-utils filter -i 2 -i 2172 -t taxonomy in.gff out.gff

In particular, the inclusion flag is tested first and then the exclusion is
tested. So a line like this one:

printf "TEST\t838\nTEST\t1485" | taxon-utils filter -p -t taxonomy.pickle -i 2 -i 1485 -e 838

Will produce TEST 1485, because both Prevotella (838) and Clostridium (1485)
are Bacteria (2) OR Prevotella, but Prevotella must be excluded according to
the exclusion option. This line also illustrate that a tab-separated file, where
the second column contains taxon IDs, can be filtered. In particular it can be
applied to files produced by download-ncbi-taxa.sh or
download-uniprot-taxa.sh (see Download Taxonomy).

Warning

Annotations with no taxon_id are not included in the output of both filters

Convert Taxa Tables to HDF5

This command is used to convert the taxa tables download from Uniprot and NCBI,
using the scripts mentioned in download-data,
download-uniprot-taxa.sh and download-ncbi-taxa into a HDF5 file that can
be used with the addtaxa command in add-gff-info - Add informations to GFF annotations.

The advantage is a faster lookup of the IDs. The other is a smaller memory
footprint when a great number of annotations are kept in memory.

Changes

Changed in version 0.3.4: changed interface and behaviour for filter, also now can filter tables;
lca has changed the interface and allows the output of a 2 column table

Changed in version 0.3.1: added to_hdf command

Changed in version 0.3.1: added -j option to lca, which outputs a JSON file with the LCA results

Changed in version 0.3.0: added -k and -kt options for Krona output, lineage now includes the LCA
also added -a option to select between lineages with only ranked taxa.
Now it defaults to all components.

Changed in version 0.2.6: added feat-type option to lca command, added phylum output to nolca

New in version 0.2.5.

	
mgkit.workflow.taxon_utils.get_taxon_info(taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.validate_taxon_ids(taxon_ids, taxonomy)

	

	
mgkit.workflow.taxon_utils.validate_taxon_names(taxon_names, taxonomy)

	

	
mgkit.workflow.taxon_utils.write_json(lca_dict, seq_id, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_krona(file_handle, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_lca_gff(file_handle, seq_id, seq, taxon_id, taxon_name, lineage, feat_type)

	

	
mgkit.workflow.taxon_utils.write_lca_tab(file_handle, seq_id, taxon_id, taxon_name, rank, lineage)

	

	
mgkit.workflow.taxon_utils.write_lca_tab_simple(file_handle, seq_id, taxon_id)

	

	
mgkit.workflow.taxon_utils.write_no_lca(file_handle, seq_id, taxon_ids, extra=None)

	

 mgkit.workflow.utils module

mgkit.workflow.utils module

Utility functions for workflows

	
class mgkit.workflow.utils.CiteAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show citation for the framework')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Argparse action to print the citation, using the mgkit.cite()
function.

	
class mgkit.workflow.utils.PrintManAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show the script manual', manual='')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

New in version 0.2.6.

Argparse action to print the manual

	
mgkit.workflow.utils.add_basic_options(parser, manual='')

	
Changed in version 0.2.6: added quiet option

Adds verbose and version options to the option parser

	
mgkit.workflow.utils.cite_callback(ctx, param, value)

	

	
mgkit.workflow.utils.exit_script(message, ret_value)

	Used to exit the script with a return value

 mgkit.align module

mgkit.align module

Module dealing with BAM/SAM files

	
class mgkit.align.SamtoolsDepth(file_handle, num_seqs=10000, max_size=1000000, max_size_dict=None)

	Bases: future.types.newobject.newobject

Changed in version 0.4.0: uses pandas.SparseArray now. It should use less memory, but needs
pandas version > 0.24

New in version 0.3.0.

A class used to cache the results of read_samtools_depth(), while
reading only the necessary data from a`samtools depth -aa` file.

	
data = None

	

	
file_handle = None

	

	
max_size = None

	

	
max_size_dict = None

	

	
region_coverage(seq_id, start, end)

	Returns the mean coverage of a region. The start and end parameters
are expected to be 1-based coordinates, like the correspondent
attributes in mgkit.io.gff.Annotation or
mgkit.io.gff.GenomicRange.

If the sequence for which the coverage is requested is not found, the
depth file is read (and cached) until it is found.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to return mean coverage

	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the region

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the region

	Returns

	mean coverage of the requested region

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.align.add_coverage_info(annotations, bam_files, samples, attr_suff='_cov')

	
Changed in version 0.3.4: the coverage now is returned as floats instead of int

Adds coverage information to annotations, using BAM files.

The coverage information is added for each sample as a ‘sample_cov’ and the
total coverage as as ‘cov’ attribute in the annotations.

Note

The bam_files and sample variables must have the same order

	Parameters

	
	annotations (iterable) – iterable of annotations

	bam_files (iterable) – iterable of pysam.Samfile instances

	sample (iterable) – names of the samples for the BAM files

	
mgkit.align.covered_annotation_bp(files, annotations, min_cov=1, progress=False)

	
New in version 0.1.14.

Returns the number of base pairs covered of annotations over multiple
samples.

	Parameters

	
	files (iterable) – an iterable that returns the alignment file names

	annotations (iterable) – an iterable that returns annotations

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minumum coverage for a base to counted

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a progress bar is used

	Returns

	a dictionary whose keys are the uid and the values the number of
bases that are covered by reads among all samples

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.align.get_region_coverage(bam_file, seq_id, feat_from, feat_to)

	Return coverage for an annotation.

Note

feat_from and feat_to are 1-based indexes

	Parameters

	
	bam_file (Samfile) – instance of pysam.Samfile

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence id

	feat_from (int [https://docs.python.org/3/library/functions.html#int]) – start position of feature

	feat_to (int [https://docs.python.org/3/library/functions.html#int]) – end position of feature

	Return int

	coverage array for the annotation

	
mgkit.align.read_samtools_depth(file_handle, num_seqs=10000, seq_ids=None)

	
Changed in version 0.4.0: now returns 3 array, instead of 2. Also added seq_ids to skip lines

Changed in version 0.3.4: num_seqs can be None to avoid a log message

New in version 0.3.0.

Reads a samtools depth file, returning a generator that yields the
array of each base coverage on a per-sequence base.

Note

The information on position is not used, to use numpy and save memory.
samtools depth should be called with the -aa option:

`samtools depth -aa bamfile`

This options will output both base position with 0 coverage and
sequneces with no aligned reads

	Parameters

	
	file_handle (file) – file handle of the coverage file

	num_seqs (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – number of sequence that fires a log message. If
None, no message is triggered

	seq_ids (dict [https://docs.python.org/3/library/stdtypes.html#dict], set [https://docs.python.org/3/library/stdtypes.html#set]) – a hashed container like a dictionary or set with
the sequences to return

	Yields

	tuple – the first element is the sequence identifier, the second one
is the numpy array with the positions, the third element is the
numpy array with the coverages

 mgkit.consts module

mgkit.consts module

Module containing constants for the filter package

 mgkit.graphs module

mgkit.graphs module

New in version 0.1.12.

Graph module

	
class mgkit.graphs.Reaction(kegg_id, substrates, products, reversible, orthologs, pathway)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.4.0.

Object used to hold information about a reaction entry in Kegg

	
__eq__(other)

	Tests equality by comparing the IDs and the compounds

	
cmp_compounds(other)

	Compares the substrates and products of the current instance with those
of another one, using information about the reversibility of the
reaction.

	
irreversible_paths = None

	

	
kegg_id = None

	

	
orthologs = None

	

	
pathways

	Set which includes all the pathways in which the reaction was found

	
products = None

	

	
reversible

	Property that returns the reversibility of the reaction according to
the information in the pathways. Returns True if the number of pathways
in which the reaction was observed as reversible is greater or equal
than the number of pathwaysin which the reaction was observerd as
irreversible.

	
reversible_paths = None

	

	
substrates = None

	

	
to_edges()

	Returns a generator of edges to be used when building a graph, along
with an attribute that specify if the reaction is reversible.

	
to_edges_compounds()

	

	
to_nodes()

	Returns a generator that returns the nodes associated with reaction,
to be used in a graph, along with attributes about the type of node
(reaction or compound).

	
update(other)

	Updates the current instance with information from another instance.
the underlining sets that hold the information are update with those
from the other instance.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the ID of the reaction is different

	
mgkit.graphs.add_module_compounds(graph, rn_defs)

	
New in version 0.3.1.

Modify in-place a graph, by adding additional compounds from a dictionary
of definitions. It uses the reversible/irreversible information for each
reaction to add the correct number of edges to the graph.

	Parameters

	
	graph (graph) – a graph to update with additional compounds

	rn_defs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary, whose keys are reactions IDs and the
values are instances of mgkit.kegg.KeggReaction

	
mgkit.graphs.annotate_graph_nodes(graph, attr, id_map, default=None, conv=None)

	
New in version 0.1.12.

Changed in version 0.4.0: added conv parameter and reworked internals

Add/Changes nodes attribute attr using a dictionary of ids->values.

Note

If the id is not found in id_map:

	default is None: no value added for that node

	default is not None: the node attribute will be set to default

	Parameters

	
	graph – the graph to annotate

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – the attribute to annotate

	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary with the values for each node

	default – the value used in case an id is not found in id_map, if
None, the attribute is not set for missing values

	conv (func) – function to convert the value to another type

	
mgkit.graphs.build_graph(id_links, name, edge_type='', weight=0.5)

	
New in version 0.1.12.

Builds a networkx graph from a dictionary of nodes, as outputted by
mgkit.kegg.KeggClientRest.get_pathway_links(). The graph is
undirected, and all edges weight are the same.

	Parameters

	
	id_links (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the links

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the graph

	edge_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional name for the edge_type attribute
set for each edge

	weight (float [https://docs.python.org/3/library/functions.html#float]) – the weight assigned to each edge in the graph

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.build_weighted_graph(id_links, name, weights, edge_type='')

	
New in version 0.1.14.

Builds a networkx graph from a dictionary of nodes, as outputted by
mgkit.kegg.KeggClientRest.get_pathway_links(). The graph is
undirected, and all edges weight are the same.

	Parameters

	
	id_links (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the links

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the graph

	edge_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional name for the edge_type attribute
set for each edge

	weight (float [https://docs.python.org/3/library/functions.html#float]) – the weight assigned to each edge in the graph

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.copy_edges(g, graph1, name=None, **kwd)

	
New in version 0.1.12.

Used by link_nodes() to copy edges

	
mgkit.graphs.copy_nodes(g, graph1, name=None, id_attr=None, **kwd)

	
New in version 0.1.12.

Used by link_nodes() to copy nodes

	
mgkit.graphs.filter_graph(graph, id_list, filter_func=<function <lambda>>)

	
New in version 0.1.12.

Filter a graph based on the id_list provided and the filter function
used to test the id attribute of each node.

A node is removed if filter_func returns True on a node and its id
attribute is not in id_list

	Parameters

	
	graph – the graph to filter

	id_list (iterable) – the list of nodes that are to remain in the
graph

	filter_func (func) – function which accept a single parameter and
return a boolean

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.from_kgml(entry, graph=None, rn_ids=None)

	
New in version 0.3.1.

Given a KGML file (as string), representing a pathway in Kegg, returns a
networkx DiGraph, using reaction directionality included in the KGML. If a
reaction is reversible, 2 edges (from and to) for each compound/reaction
pair are added, giving the bidirectionality.

Note

substrate and products included in a KGML don’t represent the complete
reaction, excluding in general cofactors or more general terms.
Those can be added using add_module_compounds(), which may be
more useful when used with a restricted number of reactions (e.g.
a module)

	Parameters

	
	entry (str [https://docs.python.org/3/library/stdtypes.html#str]) – KGML file as a string, or anything that can be passed to
ElementTree

	graph (graph) – an instance of a networkx DiGraph if the network is to
be updated with a new KGML, if None a new one is created

	rn_ids (set [https://docs.python.org/3/library/stdtypes.html#set]) – a set/list of reaction IDs that are to be included, if
None all reactions are used

	Returns

	a networkx DiGraph with the reaction/compounds

	Return type

	graph

	
mgkit.graphs.link_graph(graphs, edge_links)

	
New in version 0.1.12.

Link nodes of a set of graphs using the specifics in edge_links.
The resulting graph nodes are renamed, and the nodes that are shared
between the graphs linked.

	Parameters

	
	graphs – iterable of graphs

	edge_links – iterable with function, edge_type and weight for the
links between graphs

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.link_nodes(g, graph1, graph2, id_filter, link_type, weight)

	
New in version 0.1.12.

Used by link_graph() to link nodes with the same id

	
mgkit.graphs.merge_kgmls(kgmls)

	
New in version 0.4.0.

Parses multiple KGMLs and merges the reactions from them.

	Parameters

	kgmls (iterable) – iterable of KGML files (content) to be passed to
parse_kgml_reactions()

	Returns

	dictionary with the reactions from amm te KGML files

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.graphs.parse_kgml_reactions(kgml)

	
New in version 0.4.0.

Parses a KGML for reactions, returning a dictionary with instances of
Reaction as values and the IDs as keys.

	Parameters

	kgml (str [https://docs.python.org/3/library/stdtypes.html#str]) – the KGML file content as a string (to be passed)

	Returns

	dictionary of ID->Reaction

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.graphs.rename_graph_nodes(graph, name_func=None, exclude_ids=None)

	

 mgkit.kegg module

mgkit.kegg module

Module containing classes and functions to access Kegg data

	
class mgkit.kegg.KeggClientRest(cache=None)

	Bases: future.types.newobject.newobject

Changed in version 0.3.1: added a cache attribute for some methods

Kegg REST client

The class includes methods and data to use the REST API provided by Kegg.
At the moment it provides methods to for ‘link’, ‘list’ and ‘get’
operations,

Kegg REST API [http://www.kegg.jp/kegg/rest/keggapi.html]

	
api_url = 'http://rest.kegg.jp/'

	

	
cache = None

	

	
contact = None

	

	
conv(target_db, source_db, strip=True)

	
New in version 0.3.1.

Kegg Help:

http://rest.kegg.jp/conv/<target_db>/<source_db>

(<target_db> <source_db>) = (<kegg_db> <outside_db>) | (<outside_db> <kegg_db>)

For gene identifiers:
<kegg_db> = <org>
<org> = KEGG organism code or T number
<outside_db> = ncbi-proteinid | ncbi-geneid | uniprot

For chemical substance identifiers:
<kegg_db> = drug | compound | glycan
<outside_db> = pubchem | chebi
http://rest.kegg.jp/conv/<target_db>/<dbentries>

For gene identifiers:
<dbentries> = database entries involving the following <database>
<database> = <org> | genes | ncbi-proteinid | ncbi-geneid | uniprot
<org> = KEGG organism code or T number

For chemical substance identifiers:
<dbentries> = database entries involving the following <database>
<database> = drug | compound | glycan | pubchem | chebi

Examples

>>> kc = KeggClientRest()
>>> kc.conv('ncbi-geneid', 'eco')
{'eco:b0217': {'ncbi-geneid:949009'},
 'eco:b0216': {'ncbi-geneid:947541'},
 'eco:b0215': {'ncbi-geneid:946441'},
 'eco:b0214': {'ncbi-geneid:946955'},
 'eco:b0213': {'ncbi-geneid:944903'},
...
>>> kc.conv('ncbi-proteinid', 'hsa:10458+ece:Z5100')
{'10458': {'NP_059345'}, 'Z5100': {'AAG58814'}}

	
cpd_desc_re = <_sre.SRE_Pattern object>

	

	
cpd_re = <_sre.SRE_Pattern object>

	

	
empty_cache(methods=None)

	
New in version 0.3.1.

Empties the cache completely or for a specific method(s)

	Parameters

	methods (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – string or iterable of strings that are
part of the cache. If None the cache is fully emptied

	
find(query, database, options=None, strip=True)

	
New in version 0.3.1.

Kegg Help:

http://rest.kegg.jp/find/<database>/<query>

	<database> = pathway | module | ko | genome | <org> | compound | glycan |

	reaction | rclass | enzyme | disease | drug | dgroup | environ |
genes | ligand

<org> = KEGG organism code or T number

http://rest.kegg.jp/find/<database>/<query>/<option>

<database> = compound | drug
<option> = formula | exact_mass | mol_weight

Examples

>>> kc = KeggClientRest()
>>> kc.find('CH4', 'compound')
{'C01438': 'Methane; CH4'}
>>> kc.find('K00844', 'genes', strip=False)
{'tped:TPE_0072': 'hexokinase; K00844 hexokinase [EC:2.7.1.1]',
...
>>> kc.find('174.05', 'compound', options='exact_mass')
{'C00493': '174.052823',
 'C04236': '174.052823',
 'C16588': '174.052823',
 'C17696': '174.052823',
 'C18307': '174.052823',
 'C18312': '174.052823',
 'C21281': '174.052823'}

	
get_entry(k_id, option=None)

	
Changed in version 0.3.1: this is now cached

The method abstract the use of the ‘get’ operation in the Kegg API

	Parameters

	
	k_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – kegg id of the resource to get

	option (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional, to specify a format

	
get_ids_names(target='ko', strip=True)

	
New in version 0.1.13.

Changed in version 0.3.1: the call is now cached

Returns a dictionary with the names/description of all the id of a
specific target, (ko, path, cpd, etc.)

If strip=True the id will stripped of the module abbreviation (e.g.
md:M00002->M00002)

	
get_ortholog_pathways()

	Gets ortholog pathways, replace ‘map’ with ‘ko’ in the id

	
get_pathway_links(pathway)

	Returns a dictionary with the mappings KO->compounds for a specific
Pathway or module

	
get_reaction_equations(ids, max_len=10)

	Get the equation for the reactions

	
id_prefix = {'C': 'cpd', 'K': 'ko', 'R': 'rn', 'k': 'map', 'm': 'path'}

	

	
ko_desc_re = <_sre.SRE_Pattern object>

	

	
link(target, source, options=None)

	
New in version 0.2.0.

Implements “link” operation in Kegg REST

http://www.genome.jp/linkdb/

	
link_ids(target, kegg_ids, max_len=50)

	
Changed in version 0.3.1: removed strip and cached the results

The method abstract the use of the ‘link’ operation in the Kegg API

The target parameter can be one of the following:

pathway | brite | module | disease | drug | environ | ko | genome |
<org> | compound | glycan | reaction | rpair | rclass | enzyme

<org> = KEGG organism code or T number

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – the target db

	ids – can be either a single id as a string or a list of ids

	strip (bool [https://docs.python.org/3/library/functions.html#bool]) – if the prefix (e.g. ko:K00601) should be stripped

	max_len (int [https://docs.python.org/3/library/functions.html#int]) – the maximum number of ids to retrieve with each
request, should not exceed 50

	Return dict

	dictionary mapping requested id to target id(s)

	
list_ids(k_id)

	The method abstract the use of the ‘list’ operation in the Kegg API

The k_id parameter can be one of the following:

pathway | brite | module | disease | drug | environ | ko | genome |
<org> | compound | glycan | reaction | rpair | rclass | enzyme

<org> = KEGG organism code or T number

	Parameters

	k_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – kegg database to get list of ids

	Return list

	list of ids in the specified database

	
load_cache(file_handle)

	
New in version 0.3.1.

Loads the cache from file

	
rn_eq_re = <_sre.SRE_Pattern object>

	

	
rn_name_re = <_sre.SRE_Pattern object>

	

	
write_cache(file_handle)

	
New in version 0.3.1.

Write the cache to file

	
class mgkit.kegg.KeggModule(entry=None, old=False)

	Bases: future.types.newobject.newobject

New in version 0.1.13.

Used to extract information from a pathway module entry in Kegg

The entry, as a string, can be either passed at instance creation or with
KeggModule.parse_entry()

	
classes = None

	

	
compounds = None

	

	
entry = ''

	

	
find_submodules()

	
New in version 0.3.0.

Returns the possible submodules, as a list of tuples where the elements
are the first and last compounds in a submodule

	
first_cp

	Returns the first compound in the module

	
last_cp

	Returns the first compound in the module

	
name = ''

	

	
parse_entry(entry)

	Parses a Kegg module entry and change the instance values. By default
the reactions IDs are substituted with the KO IDs

	
parse_entry2(entry)

	
New in version 0.3.0.

Parses a Kegg module entry and change the instance values. By default
the reactions IDs are NOT substituted with the KO IDs.

	
static parse_reaction(line, ko_ids=None)

	
Changed in version 0.3.0: cleaned the parsing

parses the lines with the reactions and substitute reaction IDs with
the corresponding KO IDs if provided

	
reactions = None

	

	
to_edges(id_only=None)

	
Changed in version 0.3.0: added id_only and changed to reflect changes in reactions

Returns the reactions as edges that can be supplied to make graph.

	Parameters

	id_only (None [https://docs.python.org/3/library/constants.html#None], iterable) – if None the returned edges are for the
whole module, if an iterable (converted to a set [https://docs.python.org/3/library/stdtypes.html#set]),
only edges for those reactions are returned

	Yields

	tuple – the elements are the compounds and reactions in the module

	
mgkit.kegg.parse_reaction(line, prefix=('C', 'G'))

	
New in version 0.3.1.

Parses a reaction equation from Kegg, returning the left and right
components. Needs testing

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – reaction string

	Returns

	left and right components as sets

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the

 mgkit.logger module

mgkit.logger module

Module configuring log information

	
class mgkit.logger.ColorFormatter(fmt=None, datefmt=None)

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

	
colors = {'CRITICAL': 'red', 'DEBUG': 'blue', 'ERROR': 'magenta', 'INFO': 'green', 'WARNING': 'yellow'}

	

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
mgkit.logger.config_log(level=10, output=<open file '<stderr>', mode 'w'>)

	Minimal configuration of :mod`logging` module, default to debug level and
the output is printed to standard error

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – logging level

	output (file) – file to which write the log

	
mgkit.logger.config_log_to_file(level=10, output=None)

	
New in version 0.1.14.

Minimal configuration of :mod`logging` module, default to debug level and
the output is printed to script name, using sys.argv[0].

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – logging level

	output (file) – file to which write the log

 mgkit.simple_cache module

mgkit.simple_cache module

	
class mgkit.simple_cache.memoize(func)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

a cache found on the PythonDecoratorLibrary [https://wiki.python.org/moin/PythonDecoratorLibrary#Alternate_memoize_as_dict_subclass]

Not sure about the license for it.

 mgkit.taxon module

mgkit.taxon module

This module gives access to Uniprot taxonomy data. It also defines classes
to filter, order and group data by taxa

	
exception mgkit.taxon.NoLcaFound

	Bases: exceptions.Exception

New in version 0.1.13.

Raised if no lowest common ancestor can be found in the taxonomy

	
mgkit.taxon.TaxonTuple

	alias of mgkit.taxon.UniprotTaxonTuple

	
class mgkit.taxon.Taxonomy(fname=None)

	Bases: future.types.newobject.newobject

Class that contains the whole Uniprot taxonomy. Defines some methods to
easy access of taxonomy. Follows the conventions of NCBI Taxonomy.

Defines:

	methods to load taxonomy from a pickle file or a generic file handle

	can be iterated over and returns a generator its UniprotTaxon instances

	can be used as a dictionary, in which the key is a taxon_id and the value
is its UniprotTaxon instance

	
__contains__(taxon)

	Returns True if the taxon is in the taxonomy

Accepts an int (check for taxon_id) or an instance of UniprotTaxon

	
__getitem__(taxon_id)

	Defines dictionary behavior. Key is a taxon_id, the returned value is a
UniprotTaxon instance

	
__iter__()

	Defines iterable behavior. Returns a generator for UniprotTaxon instances

	
__len__()

	Returns the number of taxa contained

	
__repr__()

	
New in version 0.2.5.

	
add_lineage(**lineage)

	
New in version 0.3.1.

Adds a lineage to the taxonomy. It’s passed by keyword arguments, where
each key is a value in the TAXON_RANKS rankes and the value is the
scientific name. Appended underscores ‘_’ will be stripped from the
rank name. This is for cases such as class where the key is a reserved
word in Python. Also one extra node can be added, such as
strain/cultivar/subspecies and so on, but one only is expected to be
passed.

	Parameters

	lineage (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the lineage as a keyword arguments

	Returns

	the taxon_id of the last element in the lineage

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if more than a keyword argument is not contained in

	TAXON_RANKS

	
add_taxon(taxon_name, common_name='', rank='no rank', parent_id=None)

	
New in version 0.3.1.

Adds a taxon to the taxonomy. If a taxon with the same name and rank is
found, its taxon_id is returned, otherwise a new taxon_id is returned.

	Parameters

	
	taxon_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – scientific name of the taxon

	common_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – common name

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank, defaults to ‘no rank’

	parent_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id of the parent, defaults to None, which
is the taxonomy root

	Returns

	the taxon_id of the added taxon (if new), or the taxon_id of
the taxon with the same name and rank found in the taxonomy

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if more than one taxon has already the passed name and

	rank and it can’t be resolved by looking at the parent_id passed,

	the exception is raised.

	
drop_taxon(taxon_id)

	
New in version 0.3.1.

Drops a taxon and all taxa below it in the taxonomy. Also reset the
name map for conistency.

	Parameters

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to drop from the taxonomy

	
find_by_name(s_name, rank=None, strict=True)

	
Changed in version 0.2.3: the search is now case insensitive

Changed in version 0.3.1: added rank and strict parameter

Returns the taxon IDs associated with the scientific name provided

	Parameters

	
	s_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the scientific name

	rank (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – return only a taxon_id of a specific rank

	strict (book) – if True and rank is not None, KeyError will be
raised if multiple taxa have the same name and rank

	Returns

	a reference to the list of IDs that have for s_name, if
rank is None. If rank is not None and one taxon is found, its
taxon_id is returned, or None if no taxon is found. If strict is
True and rank is not None, the set of taxon_ids found is
resturned.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If multiple taxa are found, a KeyError exception is

	raised.

	
gen_name_map()

	
Changed in version 0.2.3: names are stored in the mapping as lowercase

Generate a name map, where to each scientific name in the taxonomy an
id is associated.

	
get_lineage(taxon_id, names=False, only_ranked=True, with_last=True)

	
New in version 0.3.1.

Proxy for get_lineage(), with changed defaults

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to return the lineage

	names (bool [https://docs.python.org/3/library/functions.html#bool]) – if the elements of the list are converted into the
scientific names

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – only return the ranked taxa

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – include the taxon_id passed to the list

	Returns

	the lineage of the passed taxon_id as a list of IDs or names

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_lineage_string(taxon_id, only_ranked=True, with_last=True, sep=';', rank=None)

	
New in version 0.3.3.

Generates a lineage string, with the possibility of getting another
ranked taxon (via Taxonomy.get_ranked_taxon()) to another
rank, such as phylum.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to return the lineage

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – only return the ranked taxa

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – include the taxon_id passed to the list

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator used to join the lineage string

	rank (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – if None the full lineage is returned, otherwise
the lineage will be cut to the specified rank

	Returns

	lineage string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_name_map()

	Returns a taxon_id->s_name dictionary

	
get_ranked_id(taxon_id, rank=None, it=False, include_higher=True)

	
New in version 0.3.4.

Gets the ranked taxon of another one. Useful when it’s better to get a
taxon_id instead of an instance of TaxonTuple. Internally, it
relies on Taxonomy.get_ranked_taxon().

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id

	rank (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – passed over

	it (bool [https://docs.python.org/3/library/functions.html#bool]) – determines the return value. if True, a list is returned

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, any rank higher than the requested
may be returned. If False and the rank cannot be returned, None
is returned

	Returns

	The type returned is based on the it paramenter. If
it is True, the return value is a list with the taxon_id of the
ranked taxon as the sole value. If False, the returned value is the
taxon_id. include_higher determines if the return value should
be None if the exact rank was not found and include_higher is
False

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_ranked_taxon(taxon_id, rank=None, ranks=('superkingdom', 'kingdom', 'phylum', 'class', 'subclass', 'order', 'family', 'genus', 'species'), roots=False)

	
Changed in version 0.1.13: added roots argument

Traverse the branch of which the taxon argument is the leaf backward,
to get the specific rank to which the taxon belongs to.

Warning

the roots options is kept for backward compatibility and should be
be set to False

	Parameters

	
	taxon_id – id of the taxon or instance of UniprotTaxon

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that specify the rank, if None, the first valid
rank will be searched. (i.e. the first with a value different from ‘’)

	ranks – tuple of all taxonomy ranks, default to the default module
value

	roots (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses TAXON_ROOTS to solve the root
taxa

	Returns

	instance of TaxonTuple for the rank found.

	
is_ancestor(leaf_id, anc_ids)

	
Changed in version 0.1.13: now uses is_ancestor() and changed behavior

Checks if a taxon is the leaf of another one, or a list of taxa.

	Parameters

	
	leaf_id (int [https://docs.python.org/3/library/functions.html#int]) – leaf taxon id

	anc_ids (int [https://docs.python.org/3/library/functions.html#int]) – ancestor taxon id(s)

	Return bool

	True if the ancestor taxon is in the leaf taxon lineage

	
is_ranked_below(taxon_id, rank, equal=True)

	
New in version 0.4.0.

Tests if a taxon_id is below the requested rank.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxo_id to test

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank requested

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if the taxon_id tested may be of the
requested rank

	Returns

	If the passed taxon_id is below the requested rank, it
returns True. If taxon_id is of the rank requested and equal
is True, the return value is True, if equal is False the return
value is False. The return value is False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load_data(file_handle)

	
Changed in version 0.2.3: now can use read msgpack serialised files

Changed in version 0.1.13: now accepts file handles and compressed files (if file names)

Loads serialised data from file name “file_handle” and accepts
compressed files.

if the .msgpack string is found in the file name, the msgpack
package is used instead of pickle

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name to which save the instance data

	
static parse_gtdb_lineage(lineage, sep=';')

	
New in version 0.3.3.

Parse a GTDB lineage, one that defines the rank as a single letter,
followed by __ for each taxon name. Taxa are separated by semicolon
by default. Also the domain rank is renamed into superkingdom
to allow mixing of taxonomies.

	Returns

	dictionary with the parsed lineage, which can be passed to
Taxonomy.add_lineage()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
read_from_gtdb_taxonomy(file_handle, use_gtdb_name=True, sep='\t')

	
New in version 0.3.0.

Changed in version 0.3.1: replaced domain with superkingdom to support get_lineage

Reads a GTDB taxonomy file (tab separated genome_id/taxonomy) and
populate the taxonomy instance. The method also return a dictionary of
genome_id -> taxon_id.

	Parameters

	
	file_handle (file) – file with the taxonomy

	use_gtdb_name (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the names are kept as-is in the
s_name attribute of TaxonTuple and the
“cleaned” version in c_name (e.g. f__Ammonifexaceae ->
Ammonifexaceae). If False, the values are switched

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator between the columns of the file

	Returns

	dictionary of genome_id -> taxon_id, reflecting the created
taxonomy

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Note

the taxon_id are generated, so there’s no guarantee they will be
the same in a successive execution

	
read_from_ncbi_dump(nodes_file, names_file=None, merged_file=None)

	
New in version 0.2.3.

Uses the nodes.dmp and optionally names.dmp, merged.dmp files
from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/ to populate the
taxonomy.

	Parameters

	
	nodes_file (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	names_file (str [https://docs.python.org/3/library/stdtypes.html#str], file, None [https://docs.python.org/3/library/constants.html#None]) – file name or handle to the file,
if None, names won’t be added to the taxa

	merged_file (str [https://docs.python.org/3/library/stdtypes.html#str], file, None [https://docs.python.org/3/library/constants.html#None]) – file name or handle to the file,
if None, pointers to merged taxa won’t be added

	
read_taxonomy(f_handle, light=True)

	
Changed in version 0.2.1: added light parameter

Deprecated since version 0.4.0: use Taxonomy.read_from_ncbi_dump()

Reads taxonomy from a file handle.
The file needs to be a tab separated format return by a query on
Uniprot. If light is True, lineage is not stored to decrease the
memory usage. This is now the default.

New taxa will be added, duplicated taxa will be skipped.

	Parameters

	f_handle (handle) – file handle of the taxonomy file.

	
save_data(file_handle)

	
Changed in version 0.2.3: now can use msgpack to serialise

Saves taxonomy data to a file handle or file name, can write compressed
data if the file ends with “.gz”, “.bz2”

if the .msgpack string is found in the file name, the msgpack
package is used instead of pickle

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name to which save the instance data

	
class mgkit.taxon.UniprotTaxonTuple(taxon_id, s_name, c_name, rank, lineage, parent_id)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
_asdict()

	Return a new OrderedDict which maps field names to their values

	
_replace(**kwds)

	Return a new UniprotTaxonTuple object replacing specified fields with new values

	
c_name

	Alias for field number 2

	
lineage

	Alias for field number 4

	
parent_id

	Alias for field number 5

	
rank

	Alias for field number 3

	
s_name

	Alias for field number 1

	
taxon_id

	Alias for field number 0

	
mgkit.taxon.UniprotTaxonomy

	alias of mgkit.taxon.Taxonomy

	
mgkit.taxon.distance_taxa_ancestor(taxonomy, taxon_id, anc_id)

	
New in version 0.1.16.

Function to calculate the distance between a taxon and the given ancestor

The distance is equal to the number of step in the taxonomy taken to arrive
at the ancestor.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier

	anc_id (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of the ancestor

	Raturns:

	int: distance between taxon_id and it ancestor anc_id

	
mgkit.taxon.distance_two_taxa(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.16.

Calculate the distance between two taxa. The distance is equal to the sum
steps it takes to traverse the taxonomy until their last common ancestor.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of first taxon

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of second taxon

	Raturns:

	int: distance between taxon_id1 and taxon_id2

	
mgkit.taxon.get_ancestor_map(leaf_ids, anc_ids, taxonomy)

	This function returns a dictionary where every leaf taxon is associated
with the right ancestors in anc_ids

ex. {clostridium: [bacteria, clostridia]}

	
mgkit.taxon.get_lineage(taxonomy, taxon_id, names=False, only_ranked=False, with_last=False)

	
New in version 0.2.1.

Changed in version 0.2.5: added only_ranked

Changed in version 0.3.0: added with_last

Returns the lineage of a taxon_id, as a list of taxon_id or taxa names

	Parameters

	
	taxonomy – a Taxonomy instance

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id whose lineage to return

	names (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the returned list contains the names of the taxa
instead of the taxon_id

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, only taxonomic levels whose rank is in
data:TAXON_RANKS will be returned

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the passed taxon_id is included in the
lineage

	Returns

	lineage of the taxon_id, the elements are int if names is False,
and str when names is True. If a taxon has no scientific name, the
common name is used. If only_ranked is True, the returned list only
contains ranked taxa (according to TAXON_RANKS).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.taxon.is_ancestor(taxonomy, taxon_id, anc_id)

	
Changed in version 0.1.16: if a taxon_id raises a KeyError, False is returned

Determine if the given taxon id (taxon_id) has anc_id as ancestor.

:param Taxonomy taxonomy: taxonomy used to test
:param int taxon_id: leaf taxon to test
:param int anc_id: ancestor taxon to test against

	Return bool

	True if anc_id is an ancestor of taxon_id or their the same

	
mgkit.taxon.last_common_ancestor(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.13.

Finds the last common ancestor of two taxon IDs. An alias to this function
is in the same module, called lowest_common_ancestor for compatibility.

	Parameters

	
	taxonomy – Taxonomy instance used to test

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – first taxon ID

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – second taxon ID

	Raturns:

	int: taxon ID of the lowest common ancestor

	Raises

	NoLcaFound – if no common ancestor can be found

	
mgkit.taxon.last_common_ancestor_multiple(taxonomy, taxon_ids)

	
New in version 0.2.5.

Applies last_common_ancestor() to an iterable that yields taxon_id
while removing any None values. If the list is of one element, that
taxon_id is returned.

	Parameters

	
	taxonomy – instance of Taxonomy

	taxon_ids (iterable) – an iterable that yields taxon_id

	Returns

	the taxon_id that is the last common ancestor of all taxon_ids
passed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	NoLcaFound – when no common ancestry is found or the number of

	taxon_ids is 0

	
mgkit.taxon.lowest_common_ancestor(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.13.

Finds the last common ancestor of two taxon IDs. An alias to this function
is in the same module, called lowest_common_ancestor for compatibility.

	Parameters

	
	taxonomy – Taxonomy instance used to test

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – first taxon ID

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – second taxon ID

	Raturns:

	int: taxon ID of the lowest common ancestor

	Raises

	NoLcaFound – if no common ancestor can be found

	
mgkit.taxon.parse_ncbi_taxonomy_merged_file(file_handle)

	
New in version 0.2.3.

Parses the merged.dmp file where the merged taxon_id are stored. Available
at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	Returns

	dictionary with merged_id -> taxon_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.taxon.parse_ncbi_taxonomy_names_file(file_handle, name_classes=('scientific name', 'common name'))

	
New in version 0.2.3.

Parses the names.dmp file where the names associated to a taxon_id are
stored. Available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	name_classes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – name classes to save, only the scientific and
common name are stored

	Returns

	dictionary with merged_id -> taxon_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.taxon.parse_ncbi_taxonomy_nodes_file(file_handle, taxa_names=None)

	
New in version 0.2.3.

Parses the nodes.dmp file where the nodes of the taxonomy are stored.
Available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	taxa_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the taxa names (returned from
parse_ncbi_taxonomy_names_file())

	Yields

	TaxonTuple – TaxonTuple instance

	
mgkit.taxon.parse_uniprot_taxon(line, light=True)

	
Changed in version 0.1.13: now accepts empty scientific names, for root taxa

Changed in version 0.2.1: added light parameter

Deprecated since version 0.4.0.

Parses a Uniprot taxonomy file (tab delimited) line and returns a
UniprotTaxonTuple instance. If light is True, lineage is not stored to
decrease the memory usage. This is now the default.

	
mgkit.taxon.taxa_distance_matrix(taxonomy, taxon_ids)

	
New in version 0.1.16.

Given a list of taxonomic identifiers, returns a distance matrix in a
pairwise manner by using distance_two_taxa() on all possible
two element combinations of taxon_ids.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_ids (iterable) – list taxonomic identifiers

	Returns

	matrix with the pairwise distances of all taxon_ids

	Return type

	pandas.DataFrame

 mgkit.align module

mgkit.align module

Module dealing with BAM/SAM files

	
class mgkit.align.SamtoolsDepth(file_handle, num_seqs=10000, max_size=1000000, max_size_dict=None)

	Bases: future.types.newobject.newobject

Changed in version 0.4.0: uses pandas.SparseArray now. It should use less memory, but needs
pandas version > 0.24

New in version 0.3.0.

A class used to cache the results of read_samtools_depth(), while
reading only the necessary data from a`samtools depth -aa` file.

	
data = None

	

	
file_handle = None

	

	
max_size = None

	

	
max_size_dict = None

	

	
region_coverage(seq_id, start, end)

	Returns the mean coverage of a region. The start and end parameters
are expected to be 1-based coordinates, like the correspondent
attributes in mgkit.io.gff.Annotation or
mgkit.io.gff.GenomicRange.

If the sequence for which the coverage is requested is not found, the
depth file is read (and cached) until it is found.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to return mean coverage

	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the region

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the region

	Returns

	mean coverage of the requested region

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.align.add_coverage_info(annotations, bam_files, samples, attr_suff='_cov')

	
Changed in version 0.3.4: the coverage now is returned as floats instead of int

Adds coverage information to annotations, using BAM files.

The coverage information is added for each sample as a ‘sample_cov’ and the
total coverage as as ‘cov’ attribute in the annotations.

Note

The bam_files and sample variables must have the same order

	Parameters

	
	annotations (iterable) – iterable of annotations

	bam_files (iterable) – iterable of pysam.Samfile instances

	sample (iterable) – names of the samples for the BAM files

	
mgkit.align.covered_annotation_bp(files, annotations, min_cov=1, progress=False)

	
New in version 0.1.14.

Returns the number of base pairs covered of annotations over multiple
samples.

	Parameters

	
	files (iterable) – an iterable that returns the alignment file names

	annotations (iterable) – an iterable that returns annotations

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minumum coverage for a base to counted

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a progress bar is used

	Returns

	a dictionary whose keys are the uid and the values the number of
bases that are covered by reads among all samples

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.align.get_region_coverage(bam_file, seq_id, feat_from, feat_to)

	Return coverage for an annotation.

Note

feat_from and feat_to are 1-based indexes

	Parameters

	
	bam_file (Samfile) – instance of pysam.Samfile

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence id

	feat_from (int [https://docs.python.org/3/library/functions.html#int]) – start position of feature

	feat_to (int [https://docs.python.org/3/library/functions.html#int]) – end position of feature

	Return int

	coverage array for the annotation

	
mgkit.align.read_samtools_depth(file_handle, num_seqs=10000, seq_ids=None)

	
Changed in version 0.4.0: now returns 3 array, instead of 2. Also added seq_ids to skip lines

Changed in version 0.3.4: num_seqs can be None to avoid a log message

New in version 0.3.0.

Reads a samtools depth file, returning a generator that yields the
array of each base coverage on a per-sequence base.

Note

The information on position is not used, to use numpy and save memory.
samtools depth should be called with the -aa option:

`samtools depth -aa bamfile`

This options will output both base position with 0 coverage and
sequneces with no aligned reads

	Parameters

	
	file_handle (file) – file handle of the coverage file

	num_seqs (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – number of sequence that fires a log message. If
None, no message is triggered

	seq_ids (dict [https://docs.python.org/3/library/stdtypes.html#dict], set [https://docs.python.org/3/library/stdtypes.html#set]) – a hashed container like a dictionary or set with
the sequences to return

	Yields

	tuple – the first element is the sequence identifier, the second one
is the numpy array with the positions, the third element is the
numpy array with the coverages

 mgkit.consts module

mgkit.consts module

Module containing constants for the filter package

 mgkit.counts package

mgkit.counts package

Submodules

	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

Module contents

 mgkit.counts.func module

mgkit.counts.func module

New in version 0.1.13.

Misc functions for count data

	
mgkit.counts.func.batch_load_htseq_counts(count_files, samples=None, cut_name=None)

	Loads a list of htseq count result files and returns a DataFrame
(IDxSAMPLE)

The sample names are names are the file names if samples and cut_name
are None, supplying a list of sample names with samples is the
preferred way, and cut_name is used for backward compatibility and as an
option in cases a string replace is enough.

	Parameters

	
	count_files (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	samples (iterable) – list of sample names, in the same order as
count_files

	cut_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to delete from the the file names to get the
sample names

	Returns

	with sample names as columns and gene_ids as index

	Return type

	pandas.DataFrame

	
mgkit.counts.func.filter_counts(counts_iter, info_func, gfilters=None, tfilters=None)

	Returns counts that pass filters for each uid associated gene_id and
taxon_id.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gfilters (iterable) – list of filters to apply to each uid associated
gene_id

	tfilters (iterable) – list of filters to apply to each uid associated
taxon_id

	Yields

	tuple – (uid, count) that pass filters

	
mgkit.counts.func.from_gff(annotations, samples, ann_func=None, sample_func=None)

	
New in version 0.3.1.

Loads count data from a GFF file, only for the requested samples. By
default the function returns a DataFrame where the index is the uid of
each annotation and the columns the requested samples.

This can be customised by supplying ann_func and sample_func.
sample_func is a function that accept a sample name and is expected to
return a string or a tuple. This will be used to change the columns in the
DataFrame. ann_func must accept an mgkit.io.gff.Annotation
instance and return an iterable, with each iteration yielding either a
single element or a tuple (for a MultiIndex DataFrame), each element
yielded will have the count of that annotation added to.

	Parameters

	
	annotation (iterable) – iterable yielding annotations

	samples (iterable) – list of samples to keep

	ann_func (func) – function used to customise the output

	sample_func (func) – function to customise the column elements

	Returns

	dataframe with the count data, columns are the samples and
rows the annotation counts (unless mapped with ann_func)

	Return type

	DataFrame

	Exmples:

	Assuming we have a list of annotations and sample SAMPLE1 and SAMPLE2
we can obtain the count table for all annotations with this

>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'])

Assuming we want to group the samples, for example treatment1,
treatment2 and control1, control2 into a MultiIndex DataFrame column

>>> sample_func = lambda x: ('T' if x.startswith('t') else 'C', x)
>>> from_gff(annotations, ['treatment1', 'treatment2', 'control1',
'control2'], sample_func=sample_func)

Annotations can be mapped to other levels for example instead of using
the uid that is the default, it can be mapped to the gene_id,
taxon_id information that is included in the annotation, resulting in a
MultiIndex index for the rows, with (gene_id, taxon_id) as key.

>>> ann_func = lambda x: [(x.gene_id, x.taxon_id)]
>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'], ann_func=ann_func)

	
mgkit.counts.func.get_uid_info(info_dict, uid)

	Simple function to get a value from a dictionary of tuples
(gene_id, taxon_id)

	
mgkit.counts.func.get_uid_info_ann(annotations, uid)

	Simple function to get a value from a dictionary of annotations

	
mgkit.counts.func.load_counts_from_gff(annotations, elem_func=<function <lambda>>, sample_func=None, nozero=True)

	
New in version 0.2.5.

Loads counts for each annotations that are stored into the annotation
counts_ attributes. Annotations with a total of 0 counts are skipped by
default (nozero=True), the row index is set to the uid of the annotation
and the column to the sample name. The functions used to transform the
indices expect the annotation (for the row, elem_func) and the sample
name (for the column, sample_func).

	Parameters

	
	annotations (iter) – iterable of annotations

	elem_func (func) – function that accepts an annotation and return a
str/int for a Index or a tuple for a MultiIndex, defaults to
returning the uid of the annotation

	sample_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function that accepts the sample name and
returns tuple for a MultiIndex. Defaults to None so no
transformation is performed

	nozero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, annotations with no counts are skipped

	
mgkit.counts.func.load_deseq2_results(file_name, taxon_id=None)

	
New in version 0.1.14.

Reads a CSV file output with DESeq2 results, adding a taxon_id to the index
for concatenating multiple results from different taxonomic groups.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name of the CSV

	Returns

	a MultiIndex DataFrame with the results

	Return type

	pandas.DataFrame

	
mgkit.counts.func.load_htseq_counts(file_handle, conv_func=<type 'int'>)

	
Changed in version 0.1.15: added conv_func parameter

Loads an HTSeq-count result file

	Parameters

	
	file_handle (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	conv_func (func) – function to convert the number from string, defaults
to int, but float can be used as well

	Yields

	tuple – first element is the gene_id and the second is the count

	
mgkit.counts.func.load_sample_counts(info_dict, counts_iter, taxonomy, inc_anc=None, rank=None, gene_map=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
Changed in version 0.1.14: added cached argument

Changed in version 0.1.15: added uid_used parameter

Changed in version 0.2.0: info_dict can be a function

Reads sample counts, filtering and mapping them if requested. It’s an
example of the usage of the above functions.

	Parameters

	
	info_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that has uid as key and
(gene_id, taxon_id) as value. In alternative a function that
accepts a uid as sole argument and returns (gene_id, taxon_id)

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
filtered and mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_genes(info_func, counts_iter, taxonomy, inc_anc=None, gene_map=None, ex_anc=None, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific gene_id. Another difference is the absence of any
assumption on the first parameter. It is expected to return a
(gene_id, taxon_id) tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index gene_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_taxon(info_func, counts_iter, taxonomy, inc_anc=None, rank=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific taxon. Another difference is the absence of any assumption
on the first parameter. It is expected to return a (gene_id, taxon_id)
tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index taxon_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts(counts_iter, info_func, gmapper=None, tmapper=None, index=None, uid_used=None)

	
Changed in version 0.1.14: added index parameter

Changed in version 0.1.15: added uid_used parameter

Maps counts according to the gmapper and tmapper functions. Each mapped
gene ID count is the sum of all uid that have the same ID(s). The same is
true for the taxa.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gmapper (func) – fucntion that accepts a gene_id and returns a list
of mapped IDs

	tmapper (func) – fucntion that accepts a taxon_id and returns a new
taxon_id

	index (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str]) – if None, the index of the Series if
(gene_id, taxon_id), if a str, it can be either gene or
taxon, to specify a single value

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts_to_category(counts, gene_map, nomap=False, nomap_id='NOMAP')

	Used to map the counts from a certain gene identifier to another. Genes
with no mappings are not counted, unless nomap=True, in which case they
are counted as nomap_id.

	Parameters

	
	counts (iterator) – an iterator that yield a tuple, with the first value
being the gene_id and the second value the count for it

	gene_map (dictionary) – a dictionary whose keys are the gene_id yield by
counts and the values are iterable of mapping identifiers

	nomap (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, counts for genes with no mappings in gene_map
are discarded, if True, they a counted as nomap_id

	nomap_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the mapping for genes with no mappings

	Returns

	mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_gene_id_to_map(gene_map, gene_id)

	Function that extract a list of gene mappings from a dictionary and returns
an empty list if the gene_id is not found.

	
mgkit.counts.func.map_taxon_id_to_rank(taxonomy, rank, taxon_id, include_higher=True)

	Maps a taxon_id to the request taxon rank. Returns None if
include_higher is False and the found rank is not the one requested.

Internally uses mgkit.taxon.Taxonomy.get_ranked_taxon()

	Parameters

	
	taxonomy – taxonomy instance

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxonomic rank requested

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to map

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	Returns

	if the mapping is successful, the ranked taxon_id is
returned, otherwise None is returned

	Return type

	(int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None])

 mgkit.counts.glm module

mgkit.counts.glm module

New in version 0.3.3.

GLM models with metagenomes and metatranscriptomes. Experimental

	
mgkit.counts.glm.fit_lowess_interpolate(endog, exog, frac=0.2, it=3, kind='slinear')

	Fits a lowess for the passed endog (Y) and exog (X) and returns an
interpolated function that describes it. The first 4 arguments are passed
to statsmodels.api.sm.nonparametric.lowess(), while the last one is
passed to scipy.interpolate.interp1d()

	Parameters

	
	endog (array) – array of the dependent variable (Y)

	exog (array) – array of the indipendent variable (X)

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the number of elements to use when fitting
(0.0-1.0)

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations to fit the lowess

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation to use

	Returns

	interpolated function representing the lowess fitted from the
data passed

	Return type

	func

	
mgkit.counts.glm.lowess_ci_bootstrap(endog, exog, num=100, frac=0.2, it=3, alpha=0.05, delta=0.0, min_value=0.001, kind='slinear')

	Bootstraps a lowess for the dependent (endog) and indipendent (exog)
arguments.

	Parameters

	
	endog (array) – indipendent variable (Y)

	exog (array) – indipendent variable (X)

	num (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations for the bootstrap

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the array to use when fitting

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations used to fit the lowess

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – confidence intervals for the bootstrap

	delta (float [https://docs.python.org/3/library/functions.html#float]) – passed to statsmodels.api.nonparametric.lowess()

	min_value (float [https://docs.python.org/3/library/functions.html#float]) – minimum value for the function to avoid out of
bounds

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation passed to
scipy.interpolate.interp1d()

	Returns

	the first element is the function describing the lowest
confidence interval, the second element is for the highest confidence
interval and the last one for the mean

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

Performance increase with the value of delta.

	
mgkit.counts.glm.optimise_alpha_scipy(formula, data, mean_func, q1_func, q2_func)

	
New in version 0.4.0.

Used to find an optimal alpha parameter for the Negative Binomial
distribution used in statsmodels, using the lowess functions from
lowess_ci_bootstrap().

	Parameters

	
	formula (str [https://docs.python.org/3/library/stdtypes.html#str]) – the formula used for the regression

	data (DataFrame) – DataFrame for regression

	mean_func (func) – function for the mean lowess_ci_bootstrap()

	q1_func (func) – function for the q1 lowess_ci_bootstrap()

	q2_func (func) – function for the q2 lowess_ci_bootstrap()

	Returns

	alpha value for the Negative Binomial

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.counts.glm.optimise_alpha_scipy_function(args, formula, data, criterion='aic')

	
New in version 0.4.0.

	
mgkit.counts.glm.variance_to_alpha(mu, func, min_alpha=0.001)

	Based on the variance defined in the Negative Binomial in statsmodels

var = mu + alpha * (mu ** 2)

	Parameters

	
	mu (float [https://docs.python.org/3/library/functions.html#float]) – mean to calculate the alphas for

	func (func) – function that returns the variace of the mean

	min_alpha (float [https://docs.python.org/3/library/functions.html#float]) – value of alpha if the func goes out of bounds

	Returns

	value of alpha for the passed mean

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 mgkit.counts.scaling module

mgkit.counts.scaling module

Scaling functions for counts

	
mgkit.counts.scaling.scale_deseq(dataframe)

	
New in version 0.1.13.

Scale a dataframe using the deseq scaling. Uses scale_factor_deseq()

	
mgkit.counts.scaling.scale_factor_deseq(dataframe)

	
New in version 0.1.13.

Returns the scale factor according to he deseq paper. The columns of the
dataframe are the samples.

size factor \(\hat{s}_{j}\) for sample j (from DESeq paper).

\[\hat{s}_{j} = median_{i} (
\frac
 {k_{ij}}
 {
 \left (
 \prod_{v=1}^{m}
 k_{iv}
 \right)^{1/m}
 }
)\]

	
mgkit.counts.scaling.scale_rpkm(dataframe, gene_len)

	
New in version 0.1.14.

Perform an RPKM scaling of the pandas dataframe/series supplied using the
gene_len series containing the gene sizes for all elements of dataframe

\[RPKM =\frac {10^{9} \cdot C} {N \cdot L}\]

 mgkit.counts.func module

mgkit.counts.func module

New in version 0.1.13.

Misc functions for count data

	
mgkit.counts.func.batch_load_htseq_counts(count_files, samples=None, cut_name=None)

	Loads a list of htseq count result files and returns a DataFrame
(IDxSAMPLE)

The sample names are names are the file names if samples and cut_name
are None, supplying a list of sample names with samples is the
preferred way, and cut_name is used for backward compatibility and as an
option in cases a string replace is enough.

	Parameters

	
	count_files (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	samples (iterable) – list of sample names, in the same order as
count_files

	cut_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to delete from the the file names to get the
sample names

	Returns

	with sample names as columns and gene_ids as index

	Return type

	pandas.DataFrame

	
mgkit.counts.func.filter_counts(counts_iter, info_func, gfilters=None, tfilters=None)

	Returns counts that pass filters for each uid associated gene_id and
taxon_id.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gfilters (iterable) – list of filters to apply to each uid associated
gene_id

	tfilters (iterable) – list of filters to apply to each uid associated
taxon_id

	Yields

	tuple – (uid, count) that pass filters

	
mgkit.counts.func.from_gff(annotations, samples, ann_func=None, sample_func=None)

	
New in version 0.3.1.

Loads count data from a GFF file, only for the requested samples. By
default the function returns a DataFrame where the index is the uid of
each annotation and the columns the requested samples.

This can be customised by supplying ann_func and sample_func.
sample_func is a function that accept a sample name and is expected to
return a string or a tuple. This will be used to change the columns in the
DataFrame. ann_func must accept an mgkit.io.gff.Annotation
instance and return an iterable, with each iteration yielding either a
single element or a tuple (for a MultiIndex DataFrame), each element
yielded will have the count of that annotation added to.

	Parameters

	
	annotation (iterable) – iterable yielding annotations

	samples (iterable) – list of samples to keep

	ann_func (func) – function used to customise the output

	sample_func (func) – function to customise the column elements

	Returns

	dataframe with the count data, columns are the samples and
rows the annotation counts (unless mapped with ann_func)

	Return type

	DataFrame

	Exmples:

	Assuming we have a list of annotations and sample SAMPLE1 and SAMPLE2
we can obtain the count table for all annotations with this

>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'])

Assuming we want to group the samples, for example treatment1,
treatment2 and control1, control2 into a MultiIndex DataFrame column

>>> sample_func = lambda x: ('T' if x.startswith('t') else 'C', x)
>>> from_gff(annotations, ['treatment1', 'treatment2', 'control1',
'control2'], sample_func=sample_func)

Annotations can be mapped to other levels for example instead of using
the uid that is the default, it can be mapped to the gene_id,
taxon_id information that is included in the annotation, resulting in a
MultiIndex index for the rows, with (gene_id, taxon_id) as key.

>>> ann_func = lambda x: [(x.gene_id, x.taxon_id)]
>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'], ann_func=ann_func)

	
mgkit.counts.func.get_uid_info(info_dict, uid)

	Simple function to get a value from a dictionary of tuples
(gene_id, taxon_id)

	
mgkit.counts.func.get_uid_info_ann(annotations, uid)

	Simple function to get a value from a dictionary of annotations

	
mgkit.counts.func.load_counts_from_gff(annotations, elem_func=<function <lambda>>, sample_func=None, nozero=True)

	
New in version 0.2.5.

Loads counts for each annotations that are stored into the annotation
counts_ attributes. Annotations with a total of 0 counts are skipped by
default (nozero=True), the row index is set to the uid of the annotation
and the column to the sample name. The functions used to transform the
indices expect the annotation (for the row, elem_func) and the sample
name (for the column, sample_func).

	Parameters

	
	annotations (iter) – iterable of annotations

	elem_func (func) – function that accepts an annotation and return a
str/int for a Index or a tuple for a MultiIndex, defaults to
returning the uid of the annotation

	sample_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function that accepts the sample name and
returns tuple for a MultiIndex. Defaults to None so no
transformation is performed

	nozero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, annotations with no counts are skipped

	
mgkit.counts.func.load_deseq2_results(file_name, taxon_id=None)

	
New in version 0.1.14.

Reads a CSV file output with DESeq2 results, adding a taxon_id to the index
for concatenating multiple results from different taxonomic groups.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name of the CSV

	Returns

	a MultiIndex DataFrame with the results

	Return type

	pandas.DataFrame

	
mgkit.counts.func.load_htseq_counts(file_handle, conv_func=<type 'int'>)

	
Changed in version 0.1.15: added conv_func parameter

Loads an HTSeq-count result file

	Parameters

	
	file_handle (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	conv_func (func) – function to convert the number from string, defaults
to int, but float can be used as well

	Yields

	tuple – first element is the gene_id and the second is the count

	
mgkit.counts.func.load_sample_counts(info_dict, counts_iter, taxonomy, inc_anc=None, rank=None, gene_map=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
Changed in version 0.1.14: added cached argument

Changed in version 0.1.15: added uid_used parameter

Changed in version 0.2.0: info_dict can be a function

Reads sample counts, filtering and mapping them if requested. It’s an
example of the usage of the above functions.

	Parameters

	
	info_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that has uid as key and
(gene_id, taxon_id) as value. In alternative a function that
accepts a uid as sole argument and returns (gene_id, taxon_id)

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
filtered and mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_genes(info_func, counts_iter, taxonomy, inc_anc=None, gene_map=None, ex_anc=None, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific gene_id. Another difference is the absence of any
assumption on the first parameter. It is expected to return a
(gene_id, taxon_id) tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index gene_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_taxon(info_func, counts_iter, taxonomy, inc_anc=None, rank=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific taxon. Another difference is the absence of any assumption
on the first parameter. It is expected to return a (gene_id, taxon_id)
tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index taxon_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts(counts_iter, info_func, gmapper=None, tmapper=None, index=None, uid_used=None)

	
Changed in version 0.1.14: added index parameter

Changed in version 0.1.15: added uid_used parameter

Maps counts according to the gmapper and tmapper functions. Each mapped
gene ID count is the sum of all uid that have the same ID(s). The same is
true for the taxa.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gmapper (func) – fucntion that accepts a gene_id and returns a list
of mapped IDs

	tmapper (func) – fucntion that accepts a taxon_id and returns a new
taxon_id

	index (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str]) – if None, the index of the Series if
(gene_id, taxon_id), if a str, it can be either gene or
taxon, to specify a single value

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts_to_category(counts, gene_map, nomap=False, nomap_id='NOMAP')

	Used to map the counts from a certain gene identifier to another. Genes
with no mappings are not counted, unless nomap=True, in which case they
are counted as nomap_id.

	Parameters

	
	counts (iterator) – an iterator that yield a tuple, with the first value
being the gene_id and the second value the count for it

	gene_map (dictionary) – a dictionary whose keys are the gene_id yield by
counts and the values are iterable of mapping identifiers

	nomap (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, counts for genes with no mappings in gene_map
are discarded, if True, they a counted as nomap_id

	nomap_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the mapping for genes with no mappings

	Returns

	mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_gene_id_to_map(gene_map, gene_id)

	Function that extract a list of gene mappings from a dictionary and returns
an empty list if the gene_id is not found.

	
mgkit.counts.func.map_taxon_id_to_rank(taxonomy, rank, taxon_id, include_higher=True)

	Maps a taxon_id to the request taxon rank. Returns None if
include_higher is False and the found rank is not the one requested.

Internally uses mgkit.taxon.Taxonomy.get_ranked_taxon()

	Parameters

	
	taxonomy – taxonomy instance

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxonomic rank requested

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to map

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	Returns

	if the mapping is successful, the ranked taxon_id is
returned, otherwise None is returned

	Return type

	(int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None])

 mgkit.counts.glm module

mgkit.counts.glm module

New in version 0.3.3.

GLM models with metagenomes and metatranscriptomes. Experimental

	
mgkit.counts.glm.fit_lowess_interpolate(endog, exog, frac=0.2, it=3, kind='slinear')

	Fits a lowess for the passed endog (Y) and exog (X) and returns an
interpolated function that describes it. The first 4 arguments are passed
to statsmodels.api.sm.nonparametric.lowess(), while the last one is
passed to scipy.interpolate.interp1d()

	Parameters

	
	endog (array) – array of the dependent variable (Y)

	exog (array) – array of the indipendent variable (X)

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the number of elements to use when fitting
(0.0-1.0)

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations to fit the lowess

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation to use

	Returns

	interpolated function representing the lowess fitted from the
data passed

	Return type

	func

	
mgkit.counts.glm.lowess_ci_bootstrap(endog, exog, num=100, frac=0.2, it=3, alpha=0.05, delta=0.0, min_value=0.001, kind='slinear')

	Bootstraps a lowess for the dependent (endog) and indipendent (exog)
arguments.

	Parameters

	
	endog (array) – indipendent variable (Y)

	exog (array) – indipendent variable (X)

	num (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations for the bootstrap

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the array to use when fitting

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations used to fit the lowess

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – confidence intervals for the bootstrap

	delta (float [https://docs.python.org/3/library/functions.html#float]) – passed to statsmodels.api.nonparametric.lowess()

	min_value (float [https://docs.python.org/3/library/functions.html#float]) – minimum value for the function to avoid out of
bounds

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation passed to
scipy.interpolate.interp1d()

	Returns

	the first element is the function describing the lowest
confidence interval, the second element is for the highest confidence
interval and the last one for the mean

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

Performance increase with the value of delta.

	
mgkit.counts.glm.optimise_alpha_scipy(formula, data, mean_func, q1_func, q2_func)

	
New in version 0.4.0.

Used to find an optimal alpha parameter for the Negative Binomial
distribution used in statsmodels, using the lowess functions from
lowess_ci_bootstrap().

	Parameters

	
	formula (str [https://docs.python.org/3/library/stdtypes.html#str]) – the formula used for the regression

	data (DataFrame) – DataFrame for regression

	mean_func (func) – function for the mean lowess_ci_bootstrap()

	q1_func (func) – function for the q1 lowess_ci_bootstrap()

	q2_func (func) – function for the q2 lowess_ci_bootstrap()

	Returns

	alpha value for the Negative Binomial

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.counts.glm.optimise_alpha_scipy_function(args, formula, data, criterion='aic')

	
New in version 0.4.0.

	
mgkit.counts.glm.variance_to_alpha(mu, func, min_alpha=0.001)

	Based on the variance defined in the Negative Binomial in statsmodels

var = mu + alpha * (mu ** 2)

	Parameters

	
	mu (float [https://docs.python.org/3/library/functions.html#float]) – mean to calculate the alphas for

	func (func) – function that returns the variace of the mean

	min_alpha (float [https://docs.python.org/3/library/functions.html#float]) – value of alpha if the func goes out of bounds

	Returns

	value of alpha for the passed mean

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 mgkit.counts.scaling module

mgkit.counts.scaling module

Scaling functions for counts

	
mgkit.counts.scaling.scale_deseq(dataframe)

	
New in version 0.1.13.

Scale a dataframe using the deseq scaling. Uses scale_factor_deseq()

	
mgkit.counts.scaling.scale_factor_deseq(dataframe)

	
New in version 0.1.13.

Returns the scale factor according to he deseq paper. The columns of the
dataframe are the samples.

size factor \(\hat{s}_{j}\) for sample j (from DESeq paper).

\[\hat{s}_{j} = median_{i} (
\frac
 {k_{ij}}
 {
 \left (
 \prod_{v=1}^{m}
 k_{iv}
 \right)^{1/m}
 }
)\]

	
mgkit.counts.scaling.scale_rpkm(dataframe, gene_len)

	
New in version 0.1.14.

Perform an RPKM scaling of the pandas dataframe/series supplied using the
gene_len series containing the gene sizes for all elements of dataframe

\[RPKM =\frac {10^{9} \cdot C} {N \cdot L}\]

 mgkit.db package

mgkit.db package

Submodules

	mgkit.db.dbm module

	mgkit.db.mongo module

Module contents

 mgkit.db.dbm module

mgkit.db.dbm module

New in version 0.2.1.

This module contains functions and classes to use for a dbm like representation
of annotations using the semidbm package

	
class mgkit.db.dbm.GFFDB(db=None)

	Bases: future.types.newobject.newobject

New in version 0.2.1.

A wrapper for a semidbm instance, used to convert the GFF line stored in
the DB into an mgkit.io.gff.Annotation instance. If a string is
passed to the init method, a DB will be opened with the c flag.

The object behaves like a dictionary, wrapping the access to annoations
using a uid as key and converting the line into an
mgkit.io.gff.Annotation instance.

	
db = None

	

	
items()

	

	
iteritems()

	

	
itervalues()

	

	
values()

	

	
mgkit.db.dbm.create_gff_dbm(annotations, file_name)

	
New in version 0.2.1.

Creates a semidbm database, using an annotation uid as key and the gff
line as value. The object is synced before being returned.

Note

A GFF line is used instead of a json representation because it was
more compact when semidbm was tested.

	Parameters

	
	annotations (iterable) – iterable of annotations

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – database file name, opened with the c flag.

	Returns

	a semidbm database object

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

 mgkit.db.mongo module

mgkit.db.mongo module

New in version 0.2.1.

This module contains functions and classes to use for a DB like representation
of annotations using the pymongo package, a driver to MongoDB.

In a MongoDB document, exported from an annotation, using the
mgkit.io.gff.Annotation.to_mongodb() method, the keys that are defined
are:

seq_id, source, feat_type, start, end, score, strand,
phase, gene_id, taxon_id, bitscore, exp_nonsyn, exp_syn,
length, dbq, coverage, map

These are defined because they have values that are not strings (defined as
properties in mgkit.io.gff.Annotation. The rest of the attributes
defined are kept as well, but no ckeck for the data type is made.

Note

lineage is added as a key, whose values are taxon_id, if a function has
been passed to mgkit.io.gff.Annotation.to_mongodb()

The exception is the map key in the document. It store both the EC mappings
(EC attribute in the GFF), as well as all mappings whose attribute starts with
map_. The former is usually accessed from
mgkit.io.gff.Annotation.get_ec() while the latter from
mgkit.io.gff.Annotation.get_mapping() or
mgkit.io.gff.Annotation.get_mappings().

These 3 methods return a list and this list is used in the MongoDB document.
The MongoDB document will contain a map key where the values are the type
of mappings, and the values the list of IDs the annoation maps to.

Example for the map dictionary

	Type

	GFF

	Annotation

	MongoDB Document

	MongoDB Query

	EC

	EC

	get_ec

	ec

	map.ec

	KO

	map_KO

	get_mapping(‘ko’)

	ko

	map.ko

	eggNOG

	map_EGGNOG

	get_mapping(‘eggnog’)

	eggnog

	map.eggnog

	
class mgkit.db.mongo.GFFDB(db, collection, uri=None, timeout=5)

	Bases: future.types.newobject.newobject

Changed in version 0.3.4: added timeout parameter

Wrapper to a MongoDB connection/db. It is used to automate the convertion
of MongoDB records into mgkit.io.gff.Annotation instances.

	
__getitem__(uid)

	
New in version 0.3.1.

Retrieves an annotation from the DB by its uid

	
__iter__()

	
New in version 0.3.1.

Iterates over all annotations

	
conn = None

	

	
convert_record(record)

	
Changed in version 0.3.1: removes lineage from the attributes

Converts the record (a dictionary instance) to an Annotation

	
cursor(query=None)

	Returns a cursor for the query

	
db = None

	

	
find_annotation(query=None)

	Iterate over a cursor created using query and yields each record
after converting it to a mgkit.io.gff.Annotation instance,
using mgkit.db.mongo.GFFDB.convert_record().

	
insert_many(annotations)

	
New in version 0.3.4.

Inserts annotations into the DB

Warning

The object must be a mgkit.io.gff.Annotation

	
insert_one(annotation)

	
New in version 0.3.4.

Inserts an annotation into the DB

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the passed object is not an annotation

	
items()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection, yielding a
tuple (annotation.uid, annotation)

	
iteritems()

	
New in version 0.3.1.

Alias for GFFDB.items()

	
itervalues()

	
New in version 0.3.1.

Alias for GFFDB.values()

	
keys()

	
New in version 0.3.1.

Iterates over all the uid in the db/collection

	
values()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection

 mgkit.db.dbm module

mgkit.db.dbm module

New in version 0.2.1.

This module contains functions and classes to use for a dbm like representation
of annotations using the semidbm package

	
class mgkit.db.dbm.GFFDB(db=None)

	Bases: future.types.newobject.newobject

New in version 0.2.1.

A wrapper for a semidbm instance, used to convert the GFF line stored in
the DB into an mgkit.io.gff.Annotation instance. If a string is
passed to the init method, a DB will be opened with the c flag.

The object behaves like a dictionary, wrapping the access to annoations
using a uid as key and converting the line into an
mgkit.io.gff.Annotation instance.

	
db = None

	

	
items()

	

	
iteritems()

	

	
itervalues()

	

	
values()

	

	
mgkit.db.dbm.create_gff_dbm(annotations, file_name)

	
New in version 0.2.1.

Creates a semidbm database, using an annotation uid as key and the gff
line as value. The object is synced before being returned.

Note

A GFF line is used instead of a json representation because it was
more compact when semidbm was tested.

	Parameters

	
	annotations (iterable) – iterable of annotations

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – database file name, opened with the c flag.

	Returns

	a semidbm database object

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

 mgkit.db.mongo module

mgkit.db.mongo module

New in version 0.2.1.

This module contains functions and classes to use for a DB like representation
of annotations using the pymongo package, a driver to MongoDB.

In a MongoDB document, exported from an annotation, using the
mgkit.io.gff.Annotation.to_mongodb() method, the keys that are defined
are:

seq_id, source, feat_type, start, end, score, strand,
phase, gene_id, taxon_id, bitscore, exp_nonsyn, exp_syn,
length, dbq, coverage, map

These are defined because they have values that are not strings (defined as
properties in mgkit.io.gff.Annotation. The rest of the attributes
defined are kept as well, but no ckeck for the data type is made.

Note

lineage is added as a key, whose values are taxon_id, if a function has
been passed to mgkit.io.gff.Annotation.to_mongodb()

The exception is the map key in the document. It store both the EC mappings
(EC attribute in the GFF), as well as all mappings whose attribute starts with
map_. The former is usually accessed from
mgkit.io.gff.Annotation.get_ec() while the latter from
mgkit.io.gff.Annotation.get_mapping() or
mgkit.io.gff.Annotation.get_mappings().

These 3 methods return a list and this list is used in the MongoDB document.
The MongoDB document will contain a map key where the values are the type
of mappings, and the values the list of IDs the annoation maps to.

Example for the map dictionary

	Type

	GFF

	Annotation

	MongoDB Document

	MongoDB Query

	EC

	EC

	get_ec

	ec

	map.ec

	KO

	map_KO

	get_mapping(‘ko’)

	ko

	map.ko

	eggNOG

	map_EGGNOG

	get_mapping(‘eggnog’)

	eggnog

	map.eggnog

	
class mgkit.db.mongo.GFFDB(db, collection, uri=None, timeout=5)

	Bases: future.types.newobject.newobject

Changed in version 0.3.4: added timeout parameter

Wrapper to a MongoDB connection/db. It is used to automate the convertion
of MongoDB records into mgkit.io.gff.Annotation instances.

	
__getitem__(uid)

	
New in version 0.3.1.

Retrieves an annotation from the DB by its uid

	
__iter__()

	
New in version 0.3.1.

Iterates over all annotations

	
conn = None

	

	
convert_record(record)

	
Changed in version 0.3.1: removes lineage from the attributes

Converts the record (a dictionary instance) to an Annotation

	
cursor(query=None)

	Returns a cursor for the query

	
db = None

	

	
find_annotation(query=None)

	Iterate over a cursor created using query and yields each record
after converting it to a mgkit.io.gff.Annotation instance,
using mgkit.db.mongo.GFFDB.convert_record().

	
insert_many(annotations)

	
New in version 0.3.4.

Inserts annotations into the DB

Warning

The object must be a mgkit.io.gff.Annotation

	
insert_one(annotation)

	
New in version 0.3.4.

Inserts an annotation into the DB

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the passed object is not an annotation

	
items()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection, yielding a
tuple (annotation.uid, annotation)

	
iteritems()

	
New in version 0.3.1.

Alias for GFFDB.items()

	
itervalues()

	
New in version 0.3.1.

Alias for GFFDB.values()

	
keys()

	
New in version 0.3.1.

Iterates over all the uid in the db/collection

	
values()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection

 mgkit.filter package

mgkit.filter package

Submodules

	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

Module contents

Package used to store filter functions (unless specific to a package)

 mgkit.filter.common module

mgkit.filter.common module

Common consts/data for package filter

	
exception mgkit.filter.common.FilterFails

	Bases: exceptions.Exception

Raised if a filter fails

 mgkit.filter.gff module

mgkit.filter.gff module

GFF filtering

	
mgkit.filter.gff.choose_annotation(ann1, ann2, overlap=100, choose_func=None)

	
New in version 0.1.12.

Given two mgkit.io.gff.Annotation, if one of of the two
annotations either is contained in the other or they overlap for at least a
overlap number of bases, choose_func will be applied to both. The
result of choose_func is the the annotation to be discarderd. It returns
None if the annotations should be both kept.

	No checks are made to ensure that the two annotations are on the same

	sequence and strand, as the intersect method of
mgkit.io.gff.Annotation takes care of them.

	Parameters

	
	ann1 – instance of mgkit.io.gff.Annotation

	ann2 – instance of mgkit.io.gff.Annotation

	overlap (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – number of bases overlap that trigger the
filtering

	choose_func (None [https://docs.python.org/3/library/constants.html#None], func) – function that accepts ann1 and ann2 and
return the one to be discarded or None if both are accepted

	Returns

	returns either the mgkit.io.gff.Annotation
to be discarded or None, which is the result of choose_func

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], Annotation)

Note

If choose_func is None, the default function is used:

lambda a1, a2: min(a1, a2, key=lambda el: (el.dbq, el.bitscore,
 len(el)))

In order of importance the db quality, the bitscore and the length. The
annotation with the lowest tuple value is the one to discard.

	
mgkit.filter.gff.filter_annotations(annotations, choose_func=None, sort_func=None, reverse=True)

	
New in version 0.1.12.

Filter an iterable of mgkit.io.gff.Annotation instances sorted
using sort_func as key in sorted and if the order is to be reverse;
it then applies choose_func on all possible pair combinations, using
itertools.combinations.

By default choose_func is choose_annotation() with the default
values, the list of annotation is sorted by bitscore, from the highest to
the lowest value.

	Parameters

	
	annotations (iterable) – iterable of mgkit.io.gff.Annotation
instances

	choose_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function used to select the losing
annotation; if None, it will be choose_annotation() with
default values

	sort_func (func, None [https://docs.python.org/3/library/constants.html#None]) – by default the sorting key is the bitscore of
the annotations

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – passed to sorted, by default is reversed

	Returns

	a set with the annotations that pass the filtering

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.filter.gff.filter_attr_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attr dictionary contains a key whose value is
greater than or equal, or lower than or equal, for the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal or greater than and if
False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_num_s(annotation, attr=None, value=None, greater=True)

	
New in version 0.3.1.

Checks if an annotation attr dictionary contains a key whose value is
greater or lower than the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be greater than and if
False lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_str(annotation, attr=None, value=None, equal=True)

	Checks if an annotation attr dictionary contains a key shose value is
equal to, or contains the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal and if False equal value
must be contained

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base(annotation, attr=None, value=None)

	Checks if an annotation attribute is equal to the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value – the value that the attribute should be equal to

	Returns

	True if the supplied value is equal to the attribute ot False
otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attribute is greater, equal of lower than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the attribute value must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_len(annotation, value=None, greater=True)

	Checks if an annotation length is longer, equal of shorter than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	value (int [https://docs.python.org/3/library/functions.html#int]) – the length to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotation length must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 mgkit.filter.lists module

mgkit.filter.lists module

Module used to filter lists

	
mgkit.filter.lists.aggr_filtered_list(val_list, aggr_func=<function mean>, filt_func=<function <lambda>>)

	Aggregate a list of values using ‘aggr_func’ on a list that passed the
filtering in ‘filt_func’.

‘filt_func’ is a function that returns True or False for each value in
val_list. If the return value is True, the element is included in the
values passed to ‘aggr_func’. Internally a list comprehension is used and
the result passed to ‘aggr_func’

	Parameters

	
	val_list (iterable) – list of values

	aggr_func (func) – function used to aggregate the list values

	filt_func (func) – function the return True or False

	Returns

	the result of the applied ‘aggr_func’

 mgkit.filter.reads module

mgkit.filter.reads module

Some test functions to filter sequences

	
mgkit.filter.reads.expected_error_rate(qualities)

	Calculate the expected error rate for an array of qualities (converted to
probabilities).

	
mgkit.filter.reads.trim_by_ee(qualities, min_length=50, threshold=0.5, chars=True, base=33)

	Trim a sequence based on the expected error rate.

 mgkit.filter.taxon module

mgkit.filter.taxon module

New in version 0.1.9.

Taxa filtering functions

	
mgkit.filter.taxon.filter_by_ancestor(taxon_id, filter_list=None, exclude=False, taxonomy=None)

	
New in version 0.1.13.

Convenience function for filter_taxon_by_id_list(), as explained in
the latter example.

	
mgkit.filter.taxon.filter_taxon_by_id_list(taxon_id, filter_list=None, exclude=False, func=None)

	Filter a taxon_id against a list of taxon ids. Returns True if the
conditions of the filter are met.

If func is not None, a function that accepts two values is expected,
it should be either a partial is_ancestor which only accepts taxon_id and
anc_id or another function that behaves the same way.

Note

if func is None, a simple lambda is used to test identity:

func = lambda t_id, a_id: t_id == a_id

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – the taxon id to filter

	filter_list (iterable) – an iterable with taxon ids

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed (i.e. included if NOT found)

	func (func or None [https://docs.python.org/3/library/constants.html#None]) – a function that accepts taxon_id and an anc_id
and returns a bool to indicated if anc_id is ancestor of taxon_id.
Equivalent to is_ancestor().

	Returns

	True if the taxon_id is in the filter list (or a descendant of it)
False if it’s not found. Exclude equal to True reverse the result.

	Found

	Exclude

	Return Value

	Yes

	False

	True

	No

	False

	False

	Yes

	True

	False

	No

	True

	True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Example

If using func and assuming that taxonomy is an instance of
Taxonomy with data loaded:

>>> import functools
>>> import mgkit.taxon
>>> func = functools.partial(mgkit.taxon.is_ancestor, taxonomy)
>>> filter_taxon_by_id_list(1200582, [838], func=func)
True

 mgkit.filter.common module

mgkit.filter.common module

Common consts/data for package filter

	
exception mgkit.filter.common.FilterFails

	Bases: exceptions.Exception

Raised if a filter fails

 mgkit.filter.gff module

mgkit.filter.gff module

GFF filtering

	
mgkit.filter.gff.choose_annotation(ann1, ann2, overlap=100, choose_func=None)

	
New in version 0.1.12.

Given two mgkit.io.gff.Annotation, if one of of the two
annotations either is contained in the other or they overlap for at least a
overlap number of bases, choose_func will be applied to both. The
result of choose_func is the the annotation to be discarderd. It returns
None if the annotations should be both kept.

	No checks are made to ensure that the two annotations are on the same

	sequence and strand, as the intersect method of
mgkit.io.gff.Annotation takes care of them.

	Parameters

	
	ann1 – instance of mgkit.io.gff.Annotation

	ann2 – instance of mgkit.io.gff.Annotation

	overlap (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – number of bases overlap that trigger the
filtering

	choose_func (None [https://docs.python.org/3/library/constants.html#None], func) – function that accepts ann1 and ann2 and
return the one to be discarded or None if both are accepted

	Returns

	returns either the mgkit.io.gff.Annotation
to be discarded or None, which is the result of choose_func

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], Annotation)

Note

If choose_func is None, the default function is used:

lambda a1, a2: min(a1, a2, key=lambda el: (el.dbq, el.bitscore,
 len(el)))

In order of importance the db quality, the bitscore and the length. The
annotation with the lowest tuple value is the one to discard.

	
mgkit.filter.gff.filter_annotations(annotations, choose_func=None, sort_func=None, reverse=True)

	
New in version 0.1.12.

Filter an iterable of mgkit.io.gff.Annotation instances sorted
using sort_func as key in sorted and if the order is to be reverse;
it then applies choose_func on all possible pair combinations, using
itertools.combinations.

By default choose_func is choose_annotation() with the default
values, the list of annotation is sorted by bitscore, from the highest to
the lowest value.

	Parameters

	
	annotations (iterable) – iterable of mgkit.io.gff.Annotation
instances

	choose_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function used to select the losing
annotation; if None, it will be choose_annotation() with
default values

	sort_func (func, None [https://docs.python.org/3/library/constants.html#None]) – by default the sorting key is the bitscore of
the annotations

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – passed to sorted, by default is reversed

	Returns

	a set with the annotations that pass the filtering

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.filter.gff.filter_attr_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attr dictionary contains a key whose value is
greater than or equal, or lower than or equal, for the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal or greater than and if
False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_num_s(annotation, attr=None, value=None, greater=True)

	
New in version 0.3.1.

Checks if an annotation attr dictionary contains a key whose value is
greater or lower than the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be greater than and if
False lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_str(annotation, attr=None, value=None, equal=True)

	Checks if an annotation attr dictionary contains a key shose value is
equal to, or contains the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal and if False equal value
must be contained

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base(annotation, attr=None, value=None)

	Checks if an annotation attribute is equal to the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value – the value that the attribute should be equal to

	Returns

	True if the supplied value is equal to the attribute ot False
otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attribute is greater, equal of lower than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the attribute value must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_len(annotation, value=None, greater=True)

	Checks if an annotation length is longer, equal of shorter than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	value (int [https://docs.python.org/3/library/functions.html#int]) – the length to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotation length must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 mgkit.filter.lists module

mgkit.filter.lists module

Module used to filter lists

	
mgkit.filter.lists.aggr_filtered_list(val_list, aggr_func=<function mean>, filt_func=<function <lambda>>)

	Aggregate a list of values using ‘aggr_func’ on a list that passed the
filtering in ‘filt_func’.

‘filt_func’ is a function that returns True or False for each value in
val_list. If the return value is True, the element is included in the
values passed to ‘aggr_func’. Internally a list comprehension is used and
the result passed to ‘aggr_func’

	Parameters

	
	val_list (iterable) – list of values

	aggr_func (func) – function used to aggregate the list values

	filt_func (func) – function the return True or False

	Returns

	the result of the applied ‘aggr_func’

 mgkit.filter.reads module

mgkit.filter.reads module

Some test functions to filter sequences

	
mgkit.filter.reads.expected_error_rate(qualities)

	Calculate the expected error rate for an array of qualities (converted to
probabilities).

	
mgkit.filter.reads.trim_by_ee(qualities, min_length=50, threshold=0.5, chars=True, base=33)

	Trim a sequence based on the expected error rate.

 mgkit.filter.taxon module

mgkit.filter.taxon module

New in version 0.1.9.

Taxa filtering functions

	
mgkit.filter.taxon.filter_by_ancestor(taxon_id, filter_list=None, exclude=False, taxonomy=None)

	
New in version 0.1.13.

Convenience function for filter_taxon_by_id_list(), as explained in
the latter example.

	
mgkit.filter.taxon.filter_taxon_by_id_list(taxon_id, filter_list=None, exclude=False, func=None)

	Filter a taxon_id against a list of taxon ids. Returns True if the
conditions of the filter are met.

If func is not None, a function that accepts two values is expected,
it should be either a partial is_ancestor which only accepts taxon_id and
anc_id or another function that behaves the same way.

Note

if func is None, a simple lambda is used to test identity:

func = lambda t_id, a_id: t_id == a_id

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – the taxon id to filter

	filter_list (iterable) – an iterable with taxon ids

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed (i.e. included if NOT found)

	func (func or None [https://docs.python.org/3/library/constants.html#None]) – a function that accepts taxon_id and an anc_id
and returns a bool to indicated if anc_id is ancestor of taxon_id.
Equivalent to is_ancestor().

	Returns

	True if the taxon_id is in the filter list (or a descendant of it)
False if it’s not found. Exclude equal to True reverse the result.

	Found

	Exclude

	Return Value

	Yes

	False

	True

	No

	False

	False

	Yes

	True

	False

	No

	True

	True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Example

If using func and assuming that taxonomy is an instance of
Taxonomy with data loaded:

>>> import functools
>>> import mgkit.taxon
>>> func = functools.partial(mgkit.taxon.is_ancestor, taxonomy)
>>> filter_taxon_by_id_list(1200582, [838], func=func)
True

 mgkit.graphs module

mgkit.graphs module

New in version 0.1.12.

Graph module

	
class mgkit.graphs.Reaction(kegg_id, substrates, products, reversible, orthologs, pathway)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.4.0.

Object used to hold information about a reaction entry in Kegg

	
__eq__(other)

	Tests equality by comparing the IDs and the compounds

	
cmp_compounds(other)

	Compares the substrates and products of the current instance with those
of another one, using information about the reversibility of the
reaction.

	
irreversible_paths = None

	

	
kegg_id = None

	

	
orthologs = None

	

	
pathways

	Set which includes all the pathways in which the reaction was found

	
products = None

	

	
reversible

	Property that returns the reversibility of the reaction according to
the information in the pathways. Returns True if the number of pathways
in which the reaction was observed as reversible is greater or equal
than the number of pathwaysin which the reaction was observerd as
irreversible.

	
reversible_paths = None

	

	
substrates = None

	

	
to_edges()

	Returns a generator of edges to be used when building a graph, along
with an attribute that specify if the reaction is reversible.

	
to_edges_compounds()

	

	
to_nodes()

	Returns a generator that returns the nodes associated with reaction,
to be used in a graph, along with attributes about the type of node
(reaction or compound).

	
update(other)

	Updates the current instance with information from another instance.
the underlining sets that hold the information are update with those
from the other instance.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the ID of the reaction is different

	
mgkit.graphs.add_module_compounds(graph, rn_defs)

	
New in version 0.3.1.

Modify in-place a graph, by adding additional compounds from a dictionary
of definitions. It uses the reversible/irreversible information for each
reaction to add the correct number of edges to the graph.

	Parameters

	
	graph (graph) – a graph to update with additional compounds

	rn_defs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary, whose keys are reactions IDs and the
values are instances of mgkit.kegg.KeggReaction

	
mgkit.graphs.annotate_graph_nodes(graph, attr, id_map, default=None, conv=None)

	
New in version 0.1.12.

Changed in version 0.4.0: added conv parameter and reworked internals

Add/Changes nodes attribute attr using a dictionary of ids->values.

Note

If the id is not found in id_map:

	default is None: no value added for that node

	default is not None: the node attribute will be set to default

	Parameters

	
	graph – the graph to annotate

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – the attribute to annotate

	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary with the values for each node

	default – the value used in case an id is not found in id_map, if
None, the attribute is not set for missing values

	conv (func) – function to convert the value to another type

	
mgkit.graphs.build_graph(id_links, name, edge_type='', weight=0.5)

	
New in version 0.1.12.

Builds a networkx graph from a dictionary of nodes, as outputted by
mgkit.kegg.KeggClientRest.get_pathway_links(). The graph is
undirected, and all edges weight are the same.

	Parameters

	
	id_links (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the links

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the graph

	edge_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional name for the edge_type attribute
set for each edge

	weight (float [https://docs.python.org/3/library/functions.html#float]) – the weight assigned to each edge in the graph

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.build_weighted_graph(id_links, name, weights, edge_type='')

	
New in version 0.1.14.

Builds a networkx graph from a dictionary of nodes, as outputted by
mgkit.kegg.KeggClientRest.get_pathway_links(). The graph is
undirected, and all edges weight are the same.

	Parameters

	
	id_links (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the links

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the graph

	edge_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional name for the edge_type attribute
set for each edge

	weight (float [https://docs.python.org/3/library/functions.html#float]) – the weight assigned to each edge in the graph

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.copy_edges(g, graph1, name=None, **kwd)

	
New in version 0.1.12.

Used by link_nodes() to copy edges

	
mgkit.graphs.copy_nodes(g, graph1, name=None, id_attr=None, **kwd)

	
New in version 0.1.12.

Used by link_nodes() to copy nodes

	
mgkit.graphs.filter_graph(graph, id_list, filter_func=<function <lambda>>)

	
New in version 0.1.12.

Filter a graph based on the id_list provided and the filter function
used to test the id attribute of each node.

A node is removed if filter_func returns True on a node and its id
attribute is not in id_list

	Parameters

	
	graph – the graph to filter

	id_list (iterable) – the list of nodes that are to remain in the
graph

	filter_func (func) – function which accept a single parameter and
return a boolean

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.from_kgml(entry, graph=None, rn_ids=None)

	
New in version 0.3.1.

Given a KGML file (as string), representing a pathway in Kegg, returns a
networkx DiGraph, using reaction directionality included in the KGML. If a
reaction is reversible, 2 edges (from and to) for each compound/reaction
pair are added, giving the bidirectionality.

Note

substrate and products included in a KGML don’t represent the complete
reaction, excluding in general cofactors or more general terms.
Those can be added using add_module_compounds(), which may be
more useful when used with a restricted number of reactions (e.g.
a module)

	Parameters

	
	entry (str [https://docs.python.org/3/library/stdtypes.html#str]) – KGML file as a string, or anything that can be passed to
ElementTree

	graph (graph) – an instance of a networkx DiGraph if the network is to
be updated with a new KGML, if None a new one is created

	rn_ids (set [https://docs.python.org/3/library/stdtypes.html#set]) – a set/list of reaction IDs that are to be included, if
None all reactions are used

	Returns

	a networkx DiGraph with the reaction/compounds

	Return type

	graph

	
mgkit.graphs.link_graph(graphs, edge_links)

	
New in version 0.1.12.

Link nodes of a set of graphs using the specifics in edge_links.
The resulting graph nodes are renamed, and the nodes that are shared
between the graphs linked.

	Parameters

	
	graphs – iterable of graphs

	edge_links – iterable with function, edge_type and weight for the
links between graphs

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.link_nodes(g, graph1, graph2, id_filter, link_type, weight)

	
New in version 0.1.12.

Used by link_graph() to link nodes with the same id

	
mgkit.graphs.merge_kgmls(kgmls)

	
New in version 0.4.0.

Parses multiple KGMLs and merges the reactions from them.

	Parameters

	kgmls (iterable) – iterable of KGML files (content) to be passed to
parse_kgml_reactions()

	Returns

	dictionary with the reactions from amm te KGML files

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.graphs.parse_kgml_reactions(kgml)

	
New in version 0.4.0.

Parses a KGML for reactions, returning a dictionary with instances of
Reaction as values and the IDs as keys.

	Parameters

	kgml (str [https://docs.python.org/3/library/stdtypes.html#str]) – the KGML file content as a string (to be passed)

	Returns

	dictionary of ID->Reaction

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.graphs.rename_graph_nodes(graph, name_func=None, exclude_ids=None)

	

 mgkit.io package

mgkit.io package

Submodules

	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

Module contents

Package used to contain code related to I/O operations

 mgkit.io.blast module

mgkit.io.blast module

Blast routines and parsers

	
mgkit.io.blast.add_blast_result_to_annotation(annotation, gi_taxa_dict, taxonomy, threshold=60)

	
Deprecated since version 0.4.0.

Adds blast information to a GFF annotation.

	Parameters

	
	annotation – GFF annotation object

	gi_taxa_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary returned by
parse_gi_taxa_table().

	taxonomy – Uniprot taxonomy, used to add the taxon name to the
annotation

	
mgkit.io.blast.parse_accession_taxa_table(file_handle, acc_ids=None, key=1, value=2, num_lines=1000000, no_zero=True)

	
New in version 0.2.5.

Changed in version 0.3.0: added no_zero

This function superseeds parse_gi_taxa_table(), since NCBI is
deprecating the GIDs in favor of accessions like X53318. The new file can
be found at the NCBI ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid,
for DNA sequences (nt DB) nucl_gb.accession2taxid.gz.

The file contains 4 columns, the first one is the accession without its
version, the second one includes the version, the third column is the
taxonomic identifier and the fourth is either the old GID or na.

The column used as key is the second, since by default the fasta headers
used in NCBI DBs use the versioned identifier. To use the GID as key, the
key parameter can be set to 3, but if no identifier is found (na as per
the file README), the line is skipped.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	acc_ids (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – if it’s not None only the keys included in the
passed acc_ids list will be returned

	key (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the column to use as accession. Defaults
to the versioned accession that is used in GenBank fasta files.

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	no_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True (default) a key with taxon_id of 0 is not yield

Note

GIDs are being phased out in September 2016:
http://www.ncbi.nlm.nih.gov/news/03-02-2016-phase-out-of-GI-numbers/

	
mgkit.io.blast.parse_blast_tab(file_handle, seq_id=0, ret_col=(0, 1, 2, 6, 7, 11), key_func=None, value_funcs=None)

	
New in version 0.1.12.

Parses blast output tab format, returning for each line a key (the query
id) and the columns requested in a tuple.

	Parameters

	
	file_handle (file) – file name or file handle for the blast ouput

	seq_id (int [https://docs.python.org/3/library/functions.html#int]) – index for the column which has the query id

	ret_col (list [https://docs.python.org/3/library/stdtypes.html#list], None [https://docs.python.org/3/library/constants.html#None]) – list of indexes for the columns to be returned or
None if all columns must be returned

	key_func (None [https://docs.python.org/3/library/constants.html#None], func) – function to transform the query id value in the
key returned. If None, the query id is used

	value_funcs (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – list of functions to transform the value of
all the requested columns. If None the values are not converted

	Yields

	tuple – iterator of tuples with the first element being the query id
after key_func is applied, if requested and the second element of
the tuple is a tuple with the requested columns ret_col

BLAST+ used with -outfmt 6, default columns

	column index

	description

	0

	query name

	1

	subject name

	2

	percent identities

	3

	aligned length

	4

	number of mismatched positions

	5

	number of gap positions

	6

	query sequence start

	7

	query sequence end

	8

	subject sequence start

	9

	subject sequence end

	10

	e-value

	11

	bit score

	
mgkit.io.blast.parse_fragment_blast(file_handle, bitscore=40.0)

	
New in version 0.1.13.

Parse the output of a BLAST output where the sequences are the single
annotations, so the sequence names are the uid of the annotations.

The only returned values are the best hits, maxed by bitscore and identity.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (float [https://docs.python.org/3/library/functions.html#float]) – minimum bitscore for accepting a hit

	Yields

	tuple – a tuple whose first element is the uid (the sequence name) and
the second is the a list of tuples whose first element is the GID (NCBI
identifier), the second one is the identity and the third is the
bitscore of the hit.

	
mgkit.io.blast.parse_uniprot_blast(file_handle, bitscore=40, db='UNIPROT-SP', dbq=10, name_func=None, feat_type='CDS', seq_lengths=None)

	
New in version 0.1.12.

Changed in version 0.1.13: added name_func argument

Changed in version 0.2.1: added feat_type

Changed in version 0.2.3: added seq_lengths and added subject start and end and e-value

Parses BLAST results in tabular format using parse_blast_tab(),
applying a basic bitscore filter. Returns the annotations associated with
each BLAST hit.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – the minimum bitscore for an annotation to be
accepted

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database used

	dbq (int [https://docs.python.org/3/library/functions.html#int]) – an index indicating the quality of the sequence database
used; this value is used in the filtering of annotations

	name_func (func) – function to convert the name of the database
sequences. Defaults to lambda x: x.split(‘|’)[1], which can be
be used with fasta files provided by Uniprot

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_lengths (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences lengths, used to
deduct the frame of the ‘-‘ strand

	Yields

	Annotation – instances of mgkit.io.gff.Annotation instance of
each BLAST hit.

 mgkit.io.fasta module

mgkit.io.fasta module

Simple fasta parser and a few utility functions

	
mgkit.io.fasta.load_fasta(file_handle)

	
Changed in version 0.1.13: now returns uppercase sequences

Loads a fasta file and returns a generator of tuples in which the first
element is the name of the sequence and the second the sequence

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fasta file to open; a file name or a file handle
is expected

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence

	
mgkit.io.fasta.load_fasta_files(files)

	
New in version 0.3.4.

Loads all fasta files from a list or iterable

	
mgkit.io.fasta.load_fasta_prodigal(file_handle)

	
New in version 0.3.1.

Reads a Prodigal aminoacid fasta file and yields a dictionary with
basic information about the sequences.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – passed to load_fasta()

	Yields

	dict – dictionary with the information contained in the header, the last
of the attributes put into key attr, while the rest are transformed
to other keys: seq_id, seq, start, end (genomic), strand, ordinal of

	
mgkit.io.fasta.load_fasta_rename(file_handle, name_func=None)

	
New in version 0.3.1.

Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fasta.split_fasta_file(file_handle, name_mask, num_files)

	
New in version 0.1.13.

Splits a fasta file into a series of smaller files.

	Parameters

	
	file_handle (file, str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file with the input sequences

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name template for the splitted files, more
informations are found in mgkit.io.split_write()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – number of files in which to distribute the sequences

	
mgkit.io.fasta.write_fasta_sequence(file_handle, name, seq, wrap=60, write_mode='a')

	Write a fasta sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	wrap (int [https://docs.python.org/3/library/functions.html#int]) – int for the line wrapping. If None, the sequence will be
written in a single line

 mgkit.io.fastq module

mgkit.io.fastq module

Fastq utility functions

	
mgkit.io.fastq.check_fastq_type(qualities)

	Trys to guess the type of quality string used in a Fastq file

	Parameters

	qualities (str [https://docs.python.org/3/library/stdtypes.html#str]) – string with the quality scores as in the Fastq file

	Return str

	a string with the guessed quality score

Note

Possible values are the following, classified but the values usually
used in other softwares:

	ASCII33: sanger, illumina-1.8

	ASCII64: illumina-1.3, illumina-1.5, solexa-old

	
mgkit.io.fastq.choose_header_type(seq_id)

	Return the guessed compiled regular expression
:param str seq_id: sequence header to test

	Returns

	compiled regular expression object or None if no match found

	
mgkit.io.fastq.convert_seqid_to_new(seq_id)

	Convert old seq_id format for Illumina reads to the new found in Casava
1.8+

	Parameters

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	Return str

	the new format seq_id

Note

Example from Wikipedia:

old casava seq_id:
@HWUSI-EAS100R:6:73:941:1973#0/1
new casava seq_id:
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCAC

	
mgkit.io.fastq.convert_seqid_to_old(seq_id, index_as_seq=True)

	
Deprecated since version 0.3.3.

Convert old seq_id format for Illumina reads to the new found in Casava
until 1.8, which marks the new format.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	index_as_seq (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the index for the multiplex we’ll be
the sequence found at the end of the new format seq_id. Otherwise, 0
we’ll be used

	Return str

	the new format seq_id

	
mgkit.io.fastq.load_fastq(file_handle, num_qual=False)

	
New in version 0.3.1.

Loads a fastq file and returns a generator of tuples in which the first
element is the name of the sequence, the second the sequence and the third
the quality scores (converted in a numpy array if num_qual is True).

Note

this is a simple parser that assumes each sequence is on 4 lines,
1st and 3rd for the headers, 2nd for the sequence and 4th the quality
scores

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fastq file to open, can be a file name or a
file handle

	num_qual (bool [https://docs.python.org/3/library/functions.html#bool]) – if False (default), the quality score will be
returned as ASCII character, if True a numpy array.

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence, the third is the quality score. The quality scores are
kept as a string if num_qual is False (default) and converted to a
numpy array with correct values (0-41) if num_qual is True

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the headers in both sequence and quality scores are not

	valid. This implies that the sequence/qualities have carriage returns

	or the file is truncated.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the qualities are in a format different than sanger

	(min 0, max 40) or illumina-1.8 (0, 41)

	
mgkit.io.fastq.load_fastq_rename(file_handle, num_qual=False, name_func=None)

	
New in version 0.3.3.

Mirrors the same functionality in mgkit.io.fasta.load_fasta_rename().
Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fastq.write_fastq_sequence(file_handle, name, seq, qual, write_mode='a')

	
Changed in version 0.3.3: if qual is not a string it’s converted to chars (phred33)

Write a fastq sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	qual (str [https://docs.python.org/3/library/stdtypes.html#str]) – quality string

 mgkit.io.gff module

mgkit.io.gff module

This modules define classes and function related to manipulation of GFF/GTF
files.

	
class mgkit.io.gff.Annotation(seq_id='None', start=1, end=1, strand='+', source='None', feat_type='None', score=0.0, phase=0, uid=None, **kwd)

	Bases: mgkit.io.gff.GenomicRange

New in version 0.1.12.

Changed in version 0.2.1: using __slots__ for better memory usage

Alternative implementation for an Annotation. When initialised, If uid is
None, a unique id is added using uuid.uuid4.

	
add_exp_syn_count(seq, syn_matrix=None)

	
New in version 0.1.13.

Adds expected synonymous/non-synonymous values for an annotation.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence corresponding to the annotation seq_id
syn_matrix (None, dict): matrix that determines the return
values. Defaults to the one defined in the called function
mgkit.utils.sequnce.get_seq_expected_syn_count().

	
add_gc_content(seq)

	Adds GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
add_gc_ratio(seq)

	Adds GC content information for an annotation. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
attr

	

	
bitscore

	bitscore of the annotation

	
counts

	
New in version 0.2.2.

Returns the sample counts for the annotation

	
coverage

	
New in version 0.1.13.

Return the total coverage for the annotation

	Return float

	coverage

	Raises

	AttributeNotFound – if no coverage attribute is found

	
db

	db used for the gene_id prediction

	
dbq

	db quality of the annotation

	
exp_nonsyn

	
New in version 0.1.13.

Returns the expected number of non-synonymous changes

	
exp_syn

	
New in version 0.1.13.

Returns the expected number of synonymous changes

	
feat_type

	

	
fpkms

	
New in version 0.2.2.

Returns the sample fpkms for the annotation

	
gene_id

	gene_id of the annotation, or ko if available

	
get_aa_seq(seq, start=0, tbl=None, snp=None)

	
New in version 0.1.16.

Returns a translated aminoacid sequence of the annotation. The snp
parameter is passed to Annotation.get_nuc_seq()

	Parameters

	
	seq (seq) – chromosome/contig sequence

	start (int [https://docs.python.org/3/library/functions.html#int]) – position (0-based) from where the correct occurs
(frame). If None, the phase attribute is used

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon,
passed to mgkit.utils.sequence.translate_sequence()

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP and the
second element is the change

	Returns

	aminoacid sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_attr(attr, conv=<type 'str'>)

	
Changed in version 0.3.4: any GFF attribute can be returned

Changed in version 0.3.3: added seq_id as special attribute, in addition do length

New in version 0.1.13.

Generic method to get an attribute and convert it to a specific
datatype. The order for the lookup is:

	length

	self.attr (dictionary)

	getattr(self) of the first 8 columns of a GFF (seq_id, source, …)

	
get_ec(level=4)

	
New in version 0.1.13.

Changed in version 0.2.0: returns a set instead of a list

Returns the EC values associated with the annotation, cutting them at
the desired level.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – level of classification desired (between 1 and 4)

	Returns

	list of all EC numbers associated, at the desired level, if
none are found an empty set is returned

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
get_mapping(db)

	
New in version 0.1.13.

Returns the mappings, to a particular db, associated with the
annotation.

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	Returns

	list of all mappings associated, to the specified db, if
none are found an empty list is returned

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_mappings()

	
New in version 0.2.1.

Return a dictionary where the keys are the mapping DBs (lowercase) and
and the values are the mapping IDs for that DB

	
get_nuc_seq(seq, reverse=False, snp=None)

	
New in version 0.1.13.

Changed in version 0.1.16: added snp parameter

Returns the nucleotidic sequence that the annotation covers. if the
annotation’s strand is -, and reverse is True, the reverse
complement is returned.

	Parameters

	
	seq (seq) – chromosome/contig sequence

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the strand is ‘-‘, a reverse complement
is returned

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP relative to
the Annotation and the second element is the change

	Returns

	nucleotide sequence with requested transformations

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_number_of_samples(min_cov=4)

	
New in version 0.1.13.

Returns the number of sample that have at least a minimum coverage of
min_cov.

	Parameters

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage

	Return int

	number of samples passing the filter

	Raises

	AttributeNotFound – if no sample coverage attribute is found

	
is_syn(seq, pos, change, tbl=None, abs_pos=True, start=0)

	
New in version 0.1.16.

Return if a SNP is synonymous or non-synonymous.

	Parameters

	
	seq (seq) – reference sequence of the annotation

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position of the SNP on the reference (1-based index)

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation table. Defaults to the
universal genetic code

	abs_pos (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the pos is referred to the reference and
not a position relative to the annotation

	start (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – phase to be used to get the start position of
the codon. if None, the Annotation phase will be used

	Returns

	True if the SNP is synonymous, false if it’s non-synonymous

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
length

	
Changed in version 0.2.0.

Length of the annotation, uses len(self)

	
phase

	

	
region

	
New in version 0.1.13.

Return the region covered by the annotation, to use in samtools

	
sample_coverage

	
New in version 0.1.13.

Returns a dictionary with the coverage for each sample, the returned
dictionary has the sample id (stripped of the _cov) suffix and as
values the coverage (converted via int()).

	Return dict

	dictionary with the samples’ coverage

	
score

	

	
set_attr(attr, value)

	
New in version 0.1.13.

Generic method to set an attribute

	
set_mapping(db, values)

	
New in version 0.1.13.

Set mappings to a particular db, associated with the
annotation.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	mappings (iterable) – iterable of mappings

	
source

	

	
taxon_db

	db used for the taxon_id prediction

	
taxon_id

	
Changed in version 0.3.1: if taxon_id is set to “None” as a string, it’s converted to None

taxon_id of the annotation

	
to_dict(exclude_attr=None)

	
New in version 0.3.1.

Return a dictionary representation of the Annotation.

	Parameters

	exclude_attr (str [https://docs.python.org/3/library/stdtypes.html#str],list [https://docs.python.org/3/library/stdtypes.html#list]) – attributes to exclude from the dictionary,
can be either a single attribute (string) or a list of strings

	Returns

	dictionary with the annotation

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
to_file(file_handle)

	Writes the GFF annotation to file_handle

	
to_gff(sep='=')

	Format the Annotation as a GFF string.

	Parameters

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator key -> value

	Returns

	annotation formatted as GFF

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
to_gtf(gene_id_attr='uid', sep=' ')

	
New in version 0.1.15.

Changed in version 0.1.16: added gene_id_attr parameter

Changed in version 0.2.2: added sep argument, default to a space, now

Simple conversion to a valid GTF. gene_id and transcript_id are set to
uid or the attribute specified using the gene_id_attr parameter.
It’s written to be used with SNPDat.

	
to_json()

	
New in version 0.2.1.

Changed in version 0.3.1: now Annotation.to_dict() is used

Returns a json representation of the Annotation

	
to_mongodb(lineage_func=None, indent=None, raw=False)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: added indent parameter

Changed in version 0.3.4: added raw

Returns a MongoDB document that represent the Annotation.

	Parameters

	
	lineage (func) – function used to populate the lineage key, returns
a list of taxon_id

	indent (int [https://docs.python.org/3/library/functions.html#int]) – the amount of indent to put in the record, None (the
default) is for the most compact - one line for the record

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the method returns a string, which is the
json dump, if False, the value returned is the dictionary

	Returns

	the MongoDB document, with Annotation.uid as _id, as
a string if raw is True, a dictionary if it is False

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
uid

	
New in version 0.1.13.

uid of the annotation

	
exception mgkit.io.gff.AttributeNotFound

	Bases: exceptions.Exception

Raised if an attribute is not found in a GFF file

	
exception mgkit.io.gff.DuplicateKeyError

	Bases: exceptions.Exception

New in version 0.1.12.

Raised if a GFF annotation contains duplicate keys

	
class mgkit.io.gff.GenomicRange(seq_id='None', start=1, end=1, strand='+')

	Bases: future.types.newobject.newobject

Defines a genomic range

Changed in version 0.2.1: using __slots__ for better memory usage

	
__contains__(pos)

	
Changed in version 0.2.3: a range or a subclass are accepted

New in version 0.1.16.

Tests if the position is inside the range of the GenomicRange

Pos is 1-based as GenomicRange.start and
GenomicRange.end

	
end

	

	
expand_from_list(others)

	Expand the GenomicRange range instance with a list of
GenomicRange

	Parameters

	others (iterable) – iterable of GenomicRange

	
get_range()

	
New in version 0.1.13.

Returns the start and end position as a tuple

	
get_relative_pos(pos)

	
New in version 0.1.16.

Given an absolute position (referred to the reference), convert the
position to a coordinate relative to the GenomicRange

	Returns

	the position relative to the GenomicRange

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the position is not in the range

	
intersect(other)

	Return an instance of GenomicRange that represent the
intersection of the current instance and another.

	
seq_id

	

	
start

	

	
strand

	

	
union(other)

	Return the union of two GenomicRange

	
mgkit.io.gff.annotate_sequence(name, seq, window=None)

	

	
mgkit.io.gff.annotation_coverage(annotations, seqs, strand=True)

	
New in version 0.1.12.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the key, (seq_id, strand) if strand is
True or seq_id if strand is False, and the coverage is the second
value.

	
mgkit.io.gff.annotation_coverage_sorted(annotations, seqs, strand=True)

	
New in version 0.3.1.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

Note

It differs from annotation_coverage() because it assumes the
annotations are correctly sorted and in the values yielded

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the seq_id, the second the strand (if
strand is True, else it’s set to None), and the third element is the
coverage.

	
mgkit.io.gff.annotation_elongation(ann1, annotations)

	
New in version 0.1.12.

Given an Annotation instance and a list of the instances of the
same class, returns the longest overlapping range that can be found and the
annotations that are included in it.

Warning

annotations are not checked for seq_id and strand

	Parameters

	
	ann1 (Annotation) – annotation to elongate

	annotations (iterable) – iterable of Annotation instances

	Returns

	the first element is the longest range found, while the the
second element is a set with the annotations used

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.io.gff.convert_gff_to_gtf(file_in, file_out, gene_id_attr='uid')

	
New in version 0.1.16.

Function that uses Annotation.to_gtf() to convert a GFF into GTF.

	Parameters

	
	file_in (str [https://docs.python.org/3/library/stdtypes.html#str], file) – either file name or file handle of a GFF file

	file_out (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name to which write the converted annotations

	
mgkit.io.gff.diff_gff(files, key_func=None)

	
New in version 0.1.12.

Returns a simple diff made between a list of gff files. The annotations are
grouped using key_func, so it depends on it to find similar annotations.

	Parameters

	
	files (iterable) – an iterable of file handles, pointing to GFF files

	key_func (func) – function used to group annotations, defaults to this
key: (x.seq_id, x.strand, x.start, x.end, x.gene_id, x.bitscore)

	Returns

	the returned dictionary keys are determined by key_func and as
values lists. The lists elements are tuple whose first element is the
index of the file, relative to files and the second element is the
line number in which the annotation is. Can be used with the
linecache [https://docs.python.org/3/library/linecache.html#module-linecache] module.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.elongate_annotations(annotations)

	
New in version 0.1.12.

Given an iterable of Annotation instances, tries to find the all
possible longest ranges and returns them.

Warning

annotations are not checked for seq_id and strand

	Parameters

	annotations (iterable) – iterable of Annotation instances

	Returns

	set with the all ranges found

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.io.gff.extract_nuc_seqs(annotations, seqs, name_func=<function <lambda>>, reverse=False)

	
New in version 0.1.13.

Extract the nucleotidic sequences from a list of annotations. Internally
uses the method Annotation.get_nuc_seq().

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences referenced in the
annotations

	name_func (func) – function used to extract the sequence name to be
used, defaults to the uid of the annotation

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotations on the - strand are reverse
complemented

	Yields

	tuple – tuple whose first element is the sequence name and the second is
the sequence to which the annotation refers.

	
mgkit.io.gff.from_aa_blast_frag(hit, parent_ann, aa_seqs)

	

	
mgkit.io.gff.from_gff(line, strict=True, encoding='ascii')

	
New in version 0.1.12.

Changed in version 0.2.6: added strict parameter

Changed in version 0.4.0: added encoding parameter

Parse GFF line and returns an Annotation instance

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – GFF line

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Returns

	instance of Annotation for the line

	Return type

	Annotation

	Raises

	DuplicateKeyError – if the attribute column has duplicate keys

	
mgkit.io.gff.from_glimmer3(header, line, feat_type='CDS')

	
New in version 0.1.12.

Parses the line of a GLIMMER3 ouput and returns an instance of a GFF
annotation.

	Parameters

	
	header (str [https://docs.python.org/3/library/stdtypes.html#str]) – the seq_id to which the ORF belongs

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – the prediction line for the orf

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the feature type to use

	Returns

	instance of annotation

	Return type

	Annotation

Example

Assuming a GLIMMER3 output like this:

>sequence0001
orf00001 66 611 +3 6.08

The code used is:

>>> header = 'sequence0001'
>>> line = 'orf00001 66 611 +3 6.08'
>>> from_glimmer3(header, line)

	
mgkit.io.gff.from_hmmer(line, aa_seqs, feat_type='gene', source='HMMER', db='CUSTOM', custom_profiles=True, noframe=False)

	
New in version 0.1.15: first implementation to move old scripts to new GFF specs

Changed in version 0.2.1: removed compatibility with old scripts

Changed in version 0.2.2: taxon_id and taxon_name are not saved for non-custom profiles

Changed in version 0.3.1: added support for non mgkit-translated sequences (noframe)

Parse HMMER results (one line), it won’t parse commented lines (starting
with #)

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMMER domain table line

	aa_seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with amino-acid sequences (name->seq),
used to get the correct nucleotide positions

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘feature type’ column

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘source’ column

	custom_profiles (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the profile name contains gene,
taxonomy and reviewed information in the form
KOID_TAXONID_TAXON-NAME(-nr)

	noframe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the sequence is assumed to be in frame f0

	Returns

	A Annotation instance

Note

if custom_profiles is False, gene_id, taxon_id and taxon_name will
be equal to the profile name

	
mgkit.io.gff.from_json(line)

	
New in version 0.2.1.

Returns an Annotation from a json representation

	
mgkit.io.gff.from_mongodb(record, lineage=True)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: better handling of missing attributes and added lineage parameter

Returns a Annotation instance from a MongoDB record (created)
using Annotation.to_mongodb(). The actual record returned by pymongo
is a dictionary that is copied, manipulated and passed to the
Annotation.__init__().

	Parameters

	
	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary with the full record from a MongoDB query

	lineage (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates if the lineage information in the record
should be kept in the annotation

	Returns

	instance of Annotation object

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast(hit, db, feat_type='CDS', seq_len=None, to_nuc=False, **kwd)

	
New in version 0.1.12.

Changed in version 0.1.16: added to_nuc parameter

Changed in version 0.2.3: removed to_nuc, the hit can include the subject end/start and evalue

Returns an instance of Annotation

	Parameters

	
	hit (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a BLAST hit, from mgkit.io.blast.parse_blast_tab()

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db used with BLAST

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – sequence length, if supplied, the phase for strand ‘-‘
can be assigned, otherwise is assigned a 0

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast_frag(hit, parent_ann, db='NCBI-NT')

	

	
mgkit.io.gff.from_prodigal_frag(main_gff, blast_gff, attr='ID', split_func=None)

	
Changed in version 0.3.3: fixed a bug for the strand, also the code is tested

New in version 0.2.6: experimental

Reads the GFF given in output by PRODIGAL and the resulting GFF from using
BLAST (or other software) on the aa or nucleotide file output by PRODIGAL.

It then integrates the two outputs, so to the PRODIGAL GFF is added the
information from the the output of the gene prediction software used.

	Parameters

	
	main_gff (file) – GFF file from PRODIGAL

	blast_gff (file) – GFF with the returned annotations

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute in the PRODIGAL GFF that is used to identify an
annotation

	split_func (func) – function to rename the headers from the predicted
sequences back to their parent sequence

	Yields

	annotation – annotation for each blast_gff back translated

	
mgkit.io.gff.from_sequence(name, seq, feat_type='SEQUENCE', **kwd)

	
New in version 0.1.12.

Returns an instance of Annotation for the full length of a
sequence

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence, to get the length of the annotation

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.get_annotation_map(annotations, key_func, value_func)

	
New in version 0.1.15.

Applies two functions to an iterable of annotations with an iterator
returned with the applied functions. Useful to build a dictionary

	Parameters

	
	annotations (iterable) – iterable of annotations

	key_func (func) – function that accept an annotation as argument and
returns one value, the first of the returned tuple

	value_func (func) – function that accept an annotation as argument and
returns one value, the second of the returned tuple

	Yields

	tuple – a tuple where the first value is the result of key_func on
the passed annotation and the second is the value returned by
value_func on the same annotation

	
mgkit.io.gff.group_annotations(annotations, key_func=<function <lambda>>)

	
New in version 0.1.12.

Group Annotation instances in a dictionary by using a key function
that returns the key to be used in the dictionary.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Returns

	dictionary whose keys are returned by key_func and the values
are lists of annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

>>> ann = [Annotation(seq_id='seq1', strand='+', start=10, end=15),
... Annotation(seq_id='seq1', strand='+', start=1, end=5),
... Annotation(seq_id='seq1', strand='-', start=30, end=100)]
>>> group_annotations(ann)
{('seq1', '+'): [seq1(+):10-15, seq1(+):1-5], ('seq1', '-'): [seq1(-):30-100]}

	
mgkit.io.gff.group_annotations_by_ancestor(annotations, ancestors, taxonomy)

	
New in version 0.1.13.

Group annotations by the ancestors provided.

	Parameters

	
	annotations (iterable) – annotations to group

	ancestors (iterable) – list of ancestors accepted

	taxonomy – taxonomy class

	Returns

	grouped annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.group_annotations_sorted(annotations, key_func=<function <lambda>>)

	
New in version 0.1.13.

Group Annotation instances by using a key function that returns a
key. Assumes that the annotations are already sorted to return an iterator
and save memory. One way to sort them is using: sort -s -k 1,1 -k 7,7 on
the file.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Yields

	list – a list of the grouped annotations by key_func values

	
mgkit.io.gff.load_gff_base_info(files, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.uid and the value
is a tuple (Annotation.gene_id, Annotation.taxon_id)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.load_gff_mappings(files, map_db, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	map_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – any kind mapping in the GFF, as passed to
Annotation.get_mapping()

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.gene_id and the
value is a list of mappings, as returned by
Annotation.get_mapping()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.parse_gff(file_handle, gff_type=<function from_gff>, strict=True, encoding='ascii')

	
Changed in version 0.4.0: In some cases ASCII decoding is not enough, so it is parametrised now

Changed in version 0.3.4: added decoding from binary for compatibility with Python3

Changed in version 0.2.6: added strict parameter

Changed in version 0.2.3: correctly handling of GFF with comments of appended sequences

Changed in version 0.1.12: added gff_type parameter

Parse a GFF file and returns generator of GFFKegg instances

Accepts a file handle or a string with the file name

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	gff_type (class) – class/function used to parse a GFF annotation

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – encoding of the file, if ascii fails, use utf8

	Yields

	Annotation – an iterator of Annotation instances

	
mgkit.io.gff.parse_gff_files(files, strict=True)

	
New in version 0.1.15.

Changed in version 0.2.6: added strict parameter

Function that returns an iterator of annotations from multiple GFF files.

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – iterable of file names of GFF files, or a single
file name

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Yields

	Annotation – iterator of annotations

	
mgkit.io.gff.split_gff_file(file_handle, name_mask, num_files=2, encoding='ascii')

	
New in version 0.1.14.

Changed in version 0.2.6: now accept a file object as sole input

Changed in version 0.4.0: added encoding parameter

Splits a GFF, or a list of them, into a number of files. It is assured that
annotations for the same sequence are kept in the same file, which is
useful for cases like filtering, even when the annotations are from
different GFF files.

Internally, a structure is kept to check if a sequence ID is already been
stored to a file, in which case the annotation is written to that file,
otherwise a random file handles (among the open ones) is chosen.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) – a single or list of file handles (or file
names), from which the GFF annotations are read

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

Example

>>> import glob
>>> files = glob.glob('*.gff')
>>> name_mask = 'split-file-{0}.gff'
>>> split_gff_file(files, name_mask, 5)

	
mgkit.io.gff.write_gff(annotations, file_handle, verbose=True)

	
Changed in version 0.1.12: added verbose argument

Write a GFF to file

	Parameters

	
	annotations (iterable) – iterable that returns GFFKegg
or Annotation instances

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to write to

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a message is logged

 mgkit.io.glimmer module

mgkit.io.glimmer module

	
mgkit.io.glimmer.parse_glimmer3(file_handle)

	Parses an ouput file from glimmer3 and yields the header and prediction
lines. Used to feed the mgkit.io.gff.from_glimmer3() function.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	Yields

	tuple – first element is the sequence of the predicted gene and the
second is the prediction line

 mgkit.io.snpdat module

mgkit.io.snpdat module

SNPDat reader

	
class mgkit.io.snpdat.SNPDatRow(line=None, rev_comp=None)

	Bases: future.types.newobject.newobject

Class containing information ouputted by SNPDat in its result file. One
instance contains information about a row in the file.

	
chr_name

	the queried SNPs chromosome ID

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
chr_pos

	queried SNPs genomic location

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
in_feat

	Whether or not the queried SNP was within a feature

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
region

	Region containing the SNP; either exonic, intronic or
intergenic

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
feat_dist

	Distance to nearest feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feature

	Either the closest feature to the SNP or the feature
containing the SNP

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_features

	number of different features that the SNP is
annotated to

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_num

	number of annotations of the current feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_start

	Start of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_end

	End of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
gene_id

	gene ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_name

	gene name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_id

	transcript ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_name

	transcript name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exon

	exon that contains the current feature and the total
number of annotated exons for the gene containing the feature

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
strand

	strand sense of the feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ann_frame

	annotated reading frame (when contained in the GTF)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
frame

	reading frame estimated by SNPdat

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_stops

	estimated number of stop codons in the estimated
reading frame

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
codon

	codon containing the SNP, position in the codon and
reference base and mutation

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_change

	amino acid for the reference codon and new
amino acid with the mutation in place

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_ref

	reference nucleotide

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]

	
aa_change

	amino acid for the reference codon and new amino
acid with the mutation in place

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
synonymous

	Whether or not the mutation is synonymous

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
protein_id

	protein ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
messages

	messages in the SNPDat line

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
aa_change

	

	
ann_frame

	

	
chr_name

	

	
chr_pos

	

	
codon

	

	
exon

	

	
feat_dist

	

	
feat_end

	

	
feat_num

	

	
feat_start

	

	
feature

	

	
frame

	

	
gene_id

	

	
gene_name

	

	
in_feat

	

	
messages

	

	
nuc_change

	

	
nuc_ref

	

	
num_features

	

	
num_stops

	

	
protein_id

	

	
region

	

	
strand

	

	
synonymous

	

	
transcript_id

	

	
transcript_name

	

	
mgkit.io.snpdat.snpdat_reader(f_handle)

	Simple SNPDat reader.

f_handle: file handle or string for the SNPDat result file

	Returns

	generator of SNPDatRow instances

 mgkit.io.uniprot module

mgkit.io.uniprot module

New in version 0.1.13.

Uniprot file formats

	
mgkit.io.uniprot.parse_uniprot_mappings(file_handle, gene_ids=None, mappings=None, num_lines=10000000)

	Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator with the mappings.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	Yields

	tuple – the first element is the gene ID, the second is the mapping type
and third element is the mapped ID

	
mgkit.io.uniprot.uniprot_mappings_to_dict(file_handle, gene_ids, mappings, num_lines=None)

	
Changed in version 0.3.4: added num_lines

Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator of dictionaries with the mappings requested.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – passed to parse_uniprot_mappings()

	Yields

	tuple – the first element is the gene ID, the second is a dictionary
with all the mappings found, the key is the mapping type and the value
is a list of all mapped IDs

 mgkit.io.utils module

mgkit.io.utils module

Various utilities to help read and process files

	
exception mgkit.io.utils.UnsupportedFormat

	Bases: exceptions.IOError

Raised if the a file can’t be opened with the correct module

	
mgkit.io.utils.compressed_handle(file_handle)

	
New in version 0.1.13.

Tries to wrap a file handle in the appropriate compressed file class.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle

	Returns

	the same file handle if no suitable compressed file class is
found or the new file_handle which supports the compression

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.group_tuples_by_key(iterator, key_func=None, skip_elements=0)

	
New in version 0.3.1.

Group the elements of an iterator by a key and yields the grouped elements.
The elements yielded by the iterator are assumed to be a list or tuple,
with the default key (when key_func is None) being the first of the of
the objects inside that element. This behaviour can be customised by
passing to key_func a function that accept an element and returns the key
to be used.

Note

the iterable assumen that the elements are already sorted by their keys

	Parameters

	
	iterator (iterable) – iterator to be grouped

	key_func (func) – function that accepts a element and returns its
associated key

	skip_elements (int [https://docs.python.org/3/library/functions.html#int]) – number of elements to skip at the start

	Yields

	list – a list of the grouped elements by key

	
mgkit.io.utils.open_file(file_name, mode='r')

	
New in version 0.1.12.

Changed in version 0.3.4: using io.open, always in binary mode

Opens a file using the extension as a guide to which module to use.

Note

Unicode makes for a slower .translate method in Python2, so it’s
best to use the open builtin.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – mode used to open the file

	Returns

	file handle

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.split_write(records, name_mask, write_func, num_files=2)

	
New in version 0.1.13.

Splits the writing of a number of records in a series of files. The
name_mask is used as template for the file names. A string like
“split-files-{0}” can be specified and the function applies format with the
index of the pieces.

	Parameters

	
	records (iterable) – an iterable that returns a object to be saved

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	write_func (func) – a function that is called to write to the files. It
needs to accept a file handles as first argument and the record
returned by records as the second argument

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

 mgkit.io.blast module

mgkit.io.blast module

Blast routines and parsers

	
mgkit.io.blast.add_blast_result_to_annotation(annotation, gi_taxa_dict, taxonomy, threshold=60)

	
Deprecated since version 0.4.0.

Adds blast information to a GFF annotation.

	Parameters

	
	annotation – GFF annotation object

	gi_taxa_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary returned by
parse_gi_taxa_table().

	taxonomy – Uniprot taxonomy, used to add the taxon name to the
annotation

	
mgkit.io.blast.parse_accession_taxa_table(file_handle, acc_ids=None, key=1, value=2, num_lines=1000000, no_zero=True)

	
New in version 0.2.5.

Changed in version 0.3.0: added no_zero

This function superseeds parse_gi_taxa_table(), since NCBI is
deprecating the GIDs in favor of accessions like X53318. The new file can
be found at the NCBI ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid,
for DNA sequences (nt DB) nucl_gb.accession2taxid.gz.

The file contains 4 columns, the first one is the accession without its
version, the second one includes the version, the third column is the
taxonomic identifier and the fourth is either the old GID or na.

The column used as key is the second, since by default the fasta headers
used in NCBI DBs use the versioned identifier. To use the GID as key, the
key parameter can be set to 3, but if no identifier is found (na as per
the file README), the line is skipped.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	acc_ids (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – if it’s not None only the keys included in the
passed acc_ids list will be returned

	key (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the column to use as accession. Defaults
to the versioned accession that is used in GenBank fasta files.

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	no_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True (default) a key with taxon_id of 0 is not yield

Note

GIDs are being phased out in September 2016:
http://www.ncbi.nlm.nih.gov/news/03-02-2016-phase-out-of-GI-numbers/

	
mgkit.io.blast.parse_blast_tab(file_handle, seq_id=0, ret_col=(0, 1, 2, 6, 7, 11), key_func=None, value_funcs=None)

	
New in version 0.1.12.

Parses blast output tab format, returning for each line a key (the query
id) and the columns requested in a tuple.

	Parameters

	
	file_handle (file) – file name or file handle for the blast ouput

	seq_id (int [https://docs.python.org/3/library/functions.html#int]) – index for the column which has the query id

	ret_col (list [https://docs.python.org/3/library/stdtypes.html#list], None [https://docs.python.org/3/library/constants.html#None]) – list of indexes for the columns to be returned or
None if all columns must be returned

	key_func (None [https://docs.python.org/3/library/constants.html#None], func) – function to transform the query id value in the
key returned. If None, the query id is used

	value_funcs (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – list of functions to transform the value of
all the requested columns. If None the values are not converted

	Yields

	tuple – iterator of tuples with the first element being the query id
after key_func is applied, if requested and the second element of
the tuple is a tuple with the requested columns ret_col

BLAST+ used with -outfmt 6, default columns

	column index

	description

	0

	query name

	1

	subject name

	2

	percent identities

	3

	aligned length

	4

	number of mismatched positions

	5

	number of gap positions

	6

	query sequence start

	7

	query sequence end

	8

	subject sequence start

	9

	subject sequence end

	10

	e-value

	11

	bit score

	
mgkit.io.blast.parse_fragment_blast(file_handle, bitscore=40.0)

	
New in version 0.1.13.

Parse the output of a BLAST output where the sequences are the single
annotations, so the sequence names are the uid of the annotations.

The only returned values are the best hits, maxed by bitscore and identity.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (float [https://docs.python.org/3/library/functions.html#float]) – minimum bitscore for accepting a hit

	Yields

	tuple – a tuple whose first element is the uid (the sequence name) and
the second is the a list of tuples whose first element is the GID (NCBI
identifier), the second one is the identity and the third is the
bitscore of the hit.

	
mgkit.io.blast.parse_uniprot_blast(file_handle, bitscore=40, db='UNIPROT-SP', dbq=10, name_func=None, feat_type='CDS', seq_lengths=None)

	
New in version 0.1.12.

Changed in version 0.1.13: added name_func argument

Changed in version 0.2.1: added feat_type

Changed in version 0.2.3: added seq_lengths and added subject start and end and e-value

Parses BLAST results in tabular format using parse_blast_tab(),
applying a basic bitscore filter. Returns the annotations associated with
each BLAST hit.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – the minimum bitscore for an annotation to be
accepted

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database used

	dbq (int [https://docs.python.org/3/library/functions.html#int]) – an index indicating the quality of the sequence database
used; this value is used in the filtering of annotations

	name_func (func) – function to convert the name of the database
sequences. Defaults to lambda x: x.split(‘|’)[1], which can be
be used with fasta files provided by Uniprot

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_lengths (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences lengths, used to
deduct the frame of the ‘-‘ strand

	Yields

	Annotation – instances of mgkit.io.gff.Annotation instance of
each BLAST hit.

 mgkit.io.fasta module

mgkit.io.fasta module

Simple fasta parser and a few utility functions

	
mgkit.io.fasta.load_fasta(file_handle)

	
Changed in version 0.1.13: now returns uppercase sequences

Loads a fasta file and returns a generator of tuples in which the first
element is the name of the sequence and the second the sequence

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fasta file to open; a file name or a file handle
is expected

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence

	
mgkit.io.fasta.load_fasta_files(files)

	
New in version 0.3.4.

Loads all fasta files from a list or iterable

	
mgkit.io.fasta.load_fasta_prodigal(file_handle)

	
New in version 0.3.1.

Reads a Prodigal aminoacid fasta file and yields a dictionary with
basic information about the sequences.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – passed to load_fasta()

	Yields

	dict – dictionary with the information contained in the header, the last
of the attributes put into key attr, while the rest are transformed
to other keys: seq_id, seq, start, end (genomic), strand, ordinal of

	
mgkit.io.fasta.load_fasta_rename(file_handle, name_func=None)

	
New in version 0.3.1.

Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fasta.split_fasta_file(file_handle, name_mask, num_files)

	
New in version 0.1.13.

Splits a fasta file into a series of smaller files.

	Parameters

	
	file_handle (file, str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file with the input sequences

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name template for the splitted files, more
informations are found in mgkit.io.split_write()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – number of files in which to distribute the sequences

	
mgkit.io.fasta.write_fasta_sequence(file_handle, name, seq, wrap=60, write_mode='a')

	Write a fasta sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	wrap (int [https://docs.python.org/3/library/functions.html#int]) – int for the line wrapping. If None, the sequence will be
written in a single line

 mgkit.io.fastq module

mgkit.io.fastq module

Fastq utility functions

	
mgkit.io.fastq.check_fastq_type(qualities)

	Trys to guess the type of quality string used in a Fastq file

	Parameters

	qualities (str [https://docs.python.org/3/library/stdtypes.html#str]) – string with the quality scores as in the Fastq file

	Return str

	a string with the guessed quality score

Note

Possible values are the following, classified but the values usually
used in other softwares:

	ASCII33: sanger, illumina-1.8

	ASCII64: illumina-1.3, illumina-1.5, solexa-old

	
mgkit.io.fastq.choose_header_type(seq_id)

	Return the guessed compiled regular expression
:param str seq_id: sequence header to test

	Returns

	compiled regular expression object or None if no match found

	
mgkit.io.fastq.convert_seqid_to_new(seq_id)

	Convert old seq_id format for Illumina reads to the new found in Casava
1.8+

	Parameters

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	Return str

	the new format seq_id

Note

Example from Wikipedia:

old casava seq_id:
@HWUSI-EAS100R:6:73:941:1973#0/1
new casava seq_id:
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCAC

	
mgkit.io.fastq.convert_seqid_to_old(seq_id, index_as_seq=True)

	
Deprecated since version 0.3.3.

Convert old seq_id format for Illumina reads to the new found in Casava
until 1.8, which marks the new format.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	index_as_seq (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the index for the multiplex we’ll be
the sequence found at the end of the new format seq_id. Otherwise, 0
we’ll be used

	Return str

	the new format seq_id

	
mgkit.io.fastq.load_fastq(file_handle, num_qual=False)

	
New in version 0.3.1.

Loads a fastq file and returns a generator of tuples in which the first
element is the name of the sequence, the second the sequence and the third
the quality scores (converted in a numpy array if num_qual is True).

Note

this is a simple parser that assumes each sequence is on 4 lines,
1st and 3rd for the headers, 2nd for the sequence and 4th the quality
scores

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fastq file to open, can be a file name or a
file handle

	num_qual (bool [https://docs.python.org/3/library/functions.html#bool]) – if False (default), the quality score will be
returned as ASCII character, if True a numpy array.

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence, the third is the quality score. The quality scores are
kept as a string if num_qual is False (default) and converted to a
numpy array with correct values (0-41) if num_qual is True

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the headers in both sequence and quality scores are not

	valid. This implies that the sequence/qualities have carriage returns

	or the file is truncated.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the qualities are in a format different than sanger

	(min 0, max 40) or illumina-1.8 (0, 41)

	
mgkit.io.fastq.load_fastq_rename(file_handle, num_qual=False, name_func=None)

	
New in version 0.3.3.

Mirrors the same functionality in mgkit.io.fasta.load_fasta_rename().
Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fastq.write_fastq_sequence(file_handle, name, seq, qual, write_mode='a')

	
Changed in version 0.3.3: if qual is not a string it’s converted to chars (phred33)

Write a fastq sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	qual (str [https://docs.python.org/3/library/stdtypes.html#str]) – quality string

 mgkit.io.gff module

mgkit.io.gff module

This modules define classes and function related to manipulation of GFF/GTF
files.

	
class mgkit.io.gff.Annotation(seq_id='None', start=1, end=1, strand='+', source='None', feat_type='None', score=0.0, phase=0, uid=None, **kwd)

	Bases: mgkit.io.gff.GenomicRange

New in version 0.1.12.

Changed in version 0.2.1: using __slots__ for better memory usage

Alternative implementation for an Annotation. When initialised, If uid is
None, a unique id is added using uuid.uuid4.

	
add_exp_syn_count(seq, syn_matrix=None)

	
New in version 0.1.13.

Adds expected synonymous/non-synonymous values for an annotation.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence corresponding to the annotation seq_id
syn_matrix (None, dict): matrix that determines the return
values. Defaults to the one defined in the called function
mgkit.utils.sequnce.get_seq_expected_syn_count().

	
add_gc_content(seq)

	Adds GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
add_gc_ratio(seq)

	Adds GC content information for an annotation. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
attr

	

	
bitscore

	bitscore of the annotation

	
counts

	
New in version 0.2.2.

Returns the sample counts for the annotation

	
coverage

	
New in version 0.1.13.

Return the total coverage for the annotation

	Return float

	coverage

	Raises

	AttributeNotFound – if no coverage attribute is found

	
db

	db used for the gene_id prediction

	
dbq

	db quality of the annotation

	
exp_nonsyn

	
New in version 0.1.13.

Returns the expected number of non-synonymous changes

	
exp_syn

	
New in version 0.1.13.

Returns the expected number of synonymous changes

	
feat_type

	

	
fpkms

	
New in version 0.2.2.

Returns the sample fpkms for the annotation

	
gene_id

	gene_id of the annotation, or ko if available

	
get_aa_seq(seq, start=0, tbl=None, snp=None)

	
New in version 0.1.16.

Returns a translated aminoacid sequence of the annotation. The snp
parameter is passed to Annotation.get_nuc_seq()

	Parameters

	
	seq (seq) – chromosome/contig sequence

	start (int [https://docs.python.org/3/library/functions.html#int]) – position (0-based) from where the correct occurs
(frame). If None, the phase attribute is used

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon,
passed to mgkit.utils.sequence.translate_sequence()

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP and the
second element is the change

	Returns

	aminoacid sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_attr(attr, conv=<type 'str'>)

	
Changed in version 0.3.4: any GFF attribute can be returned

Changed in version 0.3.3: added seq_id as special attribute, in addition do length

New in version 0.1.13.

Generic method to get an attribute and convert it to a specific
datatype. The order for the lookup is:

	length

	self.attr (dictionary)

	getattr(self) of the first 8 columns of a GFF (seq_id, source, …)

	
get_ec(level=4)

	
New in version 0.1.13.

Changed in version 0.2.0: returns a set instead of a list

Returns the EC values associated with the annotation, cutting them at
the desired level.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – level of classification desired (between 1 and 4)

	Returns

	list of all EC numbers associated, at the desired level, if
none are found an empty set is returned

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
get_mapping(db)

	
New in version 0.1.13.

Returns the mappings, to a particular db, associated with the
annotation.

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	Returns

	list of all mappings associated, to the specified db, if
none are found an empty list is returned

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_mappings()

	
New in version 0.2.1.

Return a dictionary where the keys are the mapping DBs (lowercase) and
and the values are the mapping IDs for that DB

	
get_nuc_seq(seq, reverse=False, snp=None)

	
New in version 0.1.13.

Changed in version 0.1.16: added snp parameter

Returns the nucleotidic sequence that the annotation covers. if the
annotation’s strand is -, and reverse is True, the reverse
complement is returned.

	Parameters

	
	seq (seq) – chromosome/contig sequence

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the strand is ‘-‘, a reverse complement
is returned

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP relative to
the Annotation and the second element is the change

	Returns

	nucleotide sequence with requested transformations

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_number_of_samples(min_cov=4)

	
New in version 0.1.13.

Returns the number of sample that have at least a minimum coverage of
min_cov.

	Parameters

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage

	Return int

	number of samples passing the filter

	Raises

	AttributeNotFound – if no sample coverage attribute is found

	
is_syn(seq, pos, change, tbl=None, abs_pos=True, start=0)

	
New in version 0.1.16.

Return if a SNP is synonymous or non-synonymous.

	Parameters

	
	seq (seq) – reference sequence of the annotation

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position of the SNP on the reference (1-based index)

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation table. Defaults to the
universal genetic code

	abs_pos (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the pos is referred to the reference and
not a position relative to the annotation

	start (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – phase to be used to get the start position of
the codon. if None, the Annotation phase will be used

	Returns

	True if the SNP is synonymous, false if it’s non-synonymous

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
length

	
Changed in version 0.2.0.

Length of the annotation, uses len(self)

	
phase

	

	
region

	
New in version 0.1.13.

Return the region covered by the annotation, to use in samtools

	
sample_coverage

	
New in version 0.1.13.

Returns a dictionary with the coverage for each sample, the returned
dictionary has the sample id (stripped of the _cov) suffix and as
values the coverage (converted via int()).

	Return dict

	dictionary with the samples’ coverage

	
score

	

	
set_attr(attr, value)

	
New in version 0.1.13.

Generic method to set an attribute

	
set_mapping(db, values)

	
New in version 0.1.13.

Set mappings to a particular db, associated with the
annotation.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	mappings (iterable) – iterable of mappings

	
source

	

	
taxon_db

	db used for the taxon_id prediction

	
taxon_id

	
Changed in version 0.3.1: if taxon_id is set to “None” as a string, it’s converted to None

taxon_id of the annotation

	
to_dict(exclude_attr=None)

	
New in version 0.3.1.

Return a dictionary representation of the Annotation.

	Parameters

	exclude_attr (str [https://docs.python.org/3/library/stdtypes.html#str],list [https://docs.python.org/3/library/stdtypes.html#list]) – attributes to exclude from the dictionary,
can be either a single attribute (string) or a list of strings

	Returns

	dictionary with the annotation

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
to_file(file_handle)

	Writes the GFF annotation to file_handle

	
to_gff(sep='=')

	Format the Annotation as a GFF string.

	Parameters

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator key -> value

	Returns

	annotation formatted as GFF

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
to_gtf(gene_id_attr='uid', sep=' ')

	
New in version 0.1.15.

Changed in version 0.1.16: added gene_id_attr parameter

Changed in version 0.2.2: added sep argument, default to a space, now

Simple conversion to a valid GTF. gene_id and transcript_id are set to
uid or the attribute specified using the gene_id_attr parameter.
It’s written to be used with SNPDat.

	
to_json()

	
New in version 0.2.1.

Changed in version 0.3.1: now Annotation.to_dict() is used

Returns a json representation of the Annotation

	
to_mongodb(lineage_func=None, indent=None, raw=False)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: added indent parameter

Changed in version 0.3.4: added raw

Returns a MongoDB document that represent the Annotation.

	Parameters

	
	lineage (func) – function used to populate the lineage key, returns
a list of taxon_id

	indent (int [https://docs.python.org/3/library/functions.html#int]) – the amount of indent to put in the record, None (the
default) is for the most compact - one line for the record

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the method returns a string, which is the
json dump, if False, the value returned is the dictionary

	Returns

	the MongoDB document, with Annotation.uid as _id, as
a string if raw is True, a dictionary if it is False

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
uid

	
New in version 0.1.13.

uid of the annotation

	
exception mgkit.io.gff.AttributeNotFound

	Bases: exceptions.Exception

Raised if an attribute is not found in a GFF file

	
exception mgkit.io.gff.DuplicateKeyError

	Bases: exceptions.Exception

New in version 0.1.12.

Raised if a GFF annotation contains duplicate keys

	
class mgkit.io.gff.GenomicRange(seq_id='None', start=1, end=1, strand='+')

	Bases: future.types.newobject.newobject

Defines a genomic range

Changed in version 0.2.1: using __slots__ for better memory usage

	
__contains__(pos)

	
Changed in version 0.2.3: a range or a subclass are accepted

New in version 0.1.16.

Tests if the position is inside the range of the GenomicRange

Pos is 1-based as GenomicRange.start and
GenomicRange.end

	
end

	

	
expand_from_list(others)

	Expand the GenomicRange range instance with a list of
GenomicRange

	Parameters

	others (iterable) – iterable of GenomicRange

	
get_range()

	
New in version 0.1.13.

Returns the start and end position as a tuple

	
get_relative_pos(pos)

	
New in version 0.1.16.

Given an absolute position (referred to the reference), convert the
position to a coordinate relative to the GenomicRange

	Returns

	the position relative to the GenomicRange

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the position is not in the range

	
intersect(other)

	Return an instance of GenomicRange that represent the
intersection of the current instance and another.

	
seq_id

	

	
start

	

	
strand

	

	
union(other)

	Return the union of two GenomicRange

	
mgkit.io.gff.annotate_sequence(name, seq, window=None)

	

	
mgkit.io.gff.annotation_coverage(annotations, seqs, strand=True)

	
New in version 0.1.12.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the key, (seq_id, strand) if strand is
True or seq_id if strand is False, and the coverage is the second
value.

	
mgkit.io.gff.annotation_coverage_sorted(annotations, seqs, strand=True)

	
New in version 0.3.1.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

Note

It differs from annotation_coverage() because it assumes the
annotations are correctly sorted and in the values yielded

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the seq_id, the second the strand (if
strand is True, else it’s set to None), and the third element is the
coverage.

	
mgkit.io.gff.annotation_elongation(ann1, annotations)

	
New in version 0.1.12.

Given an Annotation instance and a list of the instances of the
same class, returns the longest overlapping range that can be found and the
annotations that are included in it.

Warning

annotations are not checked for seq_id and strand

	Parameters

	
	ann1 (Annotation) – annotation to elongate

	annotations (iterable) – iterable of Annotation instances

	Returns

	the first element is the longest range found, while the the
second element is a set with the annotations used

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.io.gff.convert_gff_to_gtf(file_in, file_out, gene_id_attr='uid')

	
New in version 0.1.16.

Function that uses Annotation.to_gtf() to convert a GFF into GTF.

	Parameters

	
	file_in (str [https://docs.python.org/3/library/stdtypes.html#str], file) – either file name or file handle of a GFF file

	file_out (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name to which write the converted annotations

	
mgkit.io.gff.diff_gff(files, key_func=None)

	
New in version 0.1.12.

Returns a simple diff made between a list of gff files. The annotations are
grouped using key_func, so it depends on it to find similar annotations.

	Parameters

	
	files (iterable) – an iterable of file handles, pointing to GFF files

	key_func (func) – function used to group annotations, defaults to this
key: (x.seq_id, x.strand, x.start, x.end, x.gene_id, x.bitscore)

	Returns

	the returned dictionary keys are determined by key_func and as
values lists. The lists elements are tuple whose first element is the
index of the file, relative to files and the second element is the
line number in which the annotation is. Can be used with the
linecache [https://docs.python.org/3/library/linecache.html#module-linecache] module.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.elongate_annotations(annotations)

	
New in version 0.1.12.

Given an iterable of Annotation instances, tries to find the all
possible longest ranges and returns them.

Warning

annotations are not checked for seq_id and strand

	Parameters

	annotations (iterable) – iterable of Annotation instances

	Returns

	set with the all ranges found

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.io.gff.extract_nuc_seqs(annotations, seqs, name_func=<function <lambda>>, reverse=False)

	
New in version 0.1.13.

Extract the nucleotidic sequences from a list of annotations. Internally
uses the method Annotation.get_nuc_seq().

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences referenced in the
annotations

	name_func (func) – function used to extract the sequence name to be
used, defaults to the uid of the annotation

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotations on the - strand are reverse
complemented

	Yields

	tuple – tuple whose first element is the sequence name and the second is
the sequence to which the annotation refers.

	
mgkit.io.gff.from_aa_blast_frag(hit, parent_ann, aa_seqs)

	

	
mgkit.io.gff.from_gff(line, strict=True, encoding='ascii')

	
New in version 0.1.12.

Changed in version 0.2.6: added strict parameter

Changed in version 0.4.0: added encoding parameter

Parse GFF line and returns an Annotation instance

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – GFF line

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Returns

	instance of Annotation for the line

	Return type

	Annotation

	Raises

	DuplicateKeyError – if the attribute column has duplicate keys

	
mgkit.io.gff.from_glimmer3(header, line, feat_type='CDS')

	
New in version 0.1.12.

Parses the line of a GLIMMER3 ouput and returns an instance of a GFF
annotation.

	Parameters

	
	header (str [https://docs.python.org/3/library/stdtypes.html#str]) – the seq_id to which the ORF belongs

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – the prediction line for the orf

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the feature type to use

	Returns

	instance of annotation

	Return type

	Annotation

Example

Assuming a GLIMMER3 output like this:

>sequence0001
orf00001 66 611 +3 6.08

The code used is:

>>> header = 'sequence0001'
>>> line = 'orf00001 66 611 +3 6.08'
>>> from_glimmer3(header, line)

	
mgkit.io.gff.from_hmmer(line, aa_seqs, feat_type='gene', source='HMMER', db='CUSTOM', custom_profiles=True, noframe=False)

	
New in version 0.1.15: first implementation to move old scripts to new GFF specs

Changed in version 0.2.1: removed compatibility with old scripts

Changed in version 0.2.2: taxon_id and taxon_name are not saved for non-custom profiles

Changed in version 0.3.1: added support for non mgkit-translated sequences (noframe)

Parse HMMER results (one line), it won’t parse commented lines (starting
with #)

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMMER domain table line

	aa_seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with amino-acid sequences (name->seq),
used to get the correct nucleotide positions

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘feature type’ column

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘source’ column

	custom_profiles (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the profile name contains gene,
taxonomy and reviewed information in the form
KOID_TAXONID_TAXON-NAME(-nr)

	noframe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the sequence is assumed to be in frame f0

	Returns

	A Annotation instance

Note

if custom_profiles is False, gene_id, taxon_id and taxon_name will
be equal to the profile name

	
mgkit.io.gff.from_json(line)

	
New in version 0.2.1.

Returns an Annotation from a json representation

	
mgkit.io.gff.from_mongodb(record, lineage=True)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: better handling of missing attributes and added lineage parameter

Returns a Annotation instance from a MongoDB record (created)
using Annotation.to_mongodb(). The actual record returned by pymongo
is a dictionary that is copied, manipulated and passed to the
Annotation.__init__().

	Parameters

	
	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary with the full record from a MongoDB query

	lineage (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates if the lineage information in the record
should be kept in the annotation

	Returns

	instance of Annotation object

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast(hit, db, feat_type='CDS', seq_len=None, to_nuc=False, **kwd)

	
New in version 0.1.12.

Changed in version 0.1.16: added to_nuc parameter

Changed in version 0.2.3: removed to_nuc, the hit can include the subject end/start and evalue

Returns an instance of Annotation

	Parameters

	
	hit (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a BLAST hit, from mgkit.io.blast.parse_blast_tab()

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db used with BLAST

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – sequence length, if supplied, the phase for strand ‘-‘
can be assigned, otherwise is assigned a 0

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast_frag(hit, parent_ann, db='NCBI-NT')

	

	
mgkit.io.gff.from_prodigal_frag(main_gff, blast_gff, attr='ID', split_func=None)

	
Changed in version 0.3.3: fixed a bug for the strand, also the code is tested

New in version 0.2.6: experimental

Reads the GFF given in output by PRODIGAL and the resulting GFF from using
BLAST (or other software) on the aa or nucleotide file output by PRODIGAL.

It then integrates the two outputs, so to the PRODIGAL GFF is added the
information from the the output of the gene prediction software used.

	Parameters

	
	main_gff (file) – GFF file from PRODIGAL

	blast_gff (file) – GFF with the returned annotations

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute in the PRODIGAL GFF that is used to identify an
annotation

	split_func (func) – function to rename the headers from the predicted
sequences back to their parent sequence

	Yields

	annotation – annotation for each blast_gff back translated

	
mgkit.io.gff.from_sequence(name, seq, feat_type='SEQUENCE', **kwd)

	
New in version 0.1.12.

Returns an instance of Annotation for the full length of a
sequence

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence, to get the length of the annotation

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.get_annotation_map(annotations, key_func, value_func)

	
New in version 0.1.15.

Applies two functions to an iterable of annotations with an iterator
returned with the applied functions. Useful to build a dictionary

	Parameters

	
	annotations (iterable) – iterable of annotations

	key_func (func) – function that accept an annotation as argument and
returns one value, the first of the returned tuple

	value_func (func) – function that accept an annotation as argument and
returns one value, the second of the returned tuple

	Yields

	tuple – a tuple where the first value is the result of key_func on
the passed annotation and the second is the value returned by
value_func on the same annotation

	
mgkit.io.gff.group_annotations(annotations, key_func=<function <lambda>>)

	
New in version 0.1.12.

Group Annotation instances in a dictionary by using a key function
that returns the key to be used in the dictionary.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Returns

	dictionary whose keys are returned by key_func and the values
are lists of annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

>>> ann = [Annotation(seq_id='seq1', strand='+', start=10, end=15),
... Annotation(seq_id='seq1', strand='+', start=1, end=5),
... Annotation(seq_id='seq1', strand='-', start=30, end=100)]
>>> group_annotations(ann)
{('seq1', '+'): [seq1(+):10-15, seq1(+):1-5], ('seq1', '-'): [seq1(-):30-100]}

	
mgkit.io.gff.group_annotations_by_ancestor(annotations, ancestors, taxonomy)

	
New in version 0.1.13.

Group annotations by the ancestors provided.

	Parameters

	
	annotations (iterable) – annotations to group

	ancestors (iterable) – list of ancestors accepted

	taxonomy – taxonomy class

	Returns

	grouped annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.group_annotations_sorted(annotations, key_func=<function <lambda>>)

	
New in version 0.1.13.

Group Annotation instances by using a key function that returns a
key. Assumes that the annotations are already sorted to return an iterator
and save memory. One way to sort them is using: sort -s -k 1,1 -k 7,7 on
the file.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Yields

	list – a list of the grouped annotations by key_func values

	
mgkit.io.gff.load_gff_base_info(files, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.uid and the value
is a tuple (Annotation.gene_id, Annotation.taxon_id)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.load_gff_mappings(files, map_db, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	map_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – any kind mapping in the GFF, as passed to
Annotation.get_mapping()

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.gene_id and the
value is a list of mappings, as returned by
Annotation.get_mapping()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.parse_gff(file_handle, gff_type=<function from_gff>, strict=True, encoding='ascii')

	
Changed in version 0.4.0: In some cases ASCII decoding is not enough, so it is parametrised now

Changed in version 0.3.4: added decoding from binary for compatibility with Python3

Changed in version 0.2.6: added strict parameter

Changed in version 0.2.3: correctly handling of GFF with comments of appended sequences

Changed in version 0.1.12: added gff_type parameter

Parse a GFF file and returns generator of GFFKegg instances

Accepts a file handle or a string with the file name

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	gff_type (class) – class/function used to parse a GFF annotation

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – encoding of the file, if ascii fails, use utf8

	Yields

	Annotation – an iterator of Annotation instances

	
mgkit.io.gff.parse_gff_files(files, strict=True)

	
New in version 0.1.15.

Changed in version 0.2.6: added strict parameter

Function that returns an iterator of annotations from multiple GFF files.

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – iterable of file names of GFF files, or a single
file name

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Yields

	Annotation – iterator of annotations

	
mgkit.io.gff.split_gff_file(file_handle, name_mask, num_files=2, encoding='ascii')

	
New in version 0.1.14.

Changed in version 0.2.6: now accept a file object as sole input

Changed in version 0.4.0: added encoding parameter

Splits a GFF, or a list of them, into a number of files. It is assured that
annotations for the same sequence are kept in the same file, which is
useful for cases like filtering, even when the annotations are from
different GFF files.

Internally, a structure is kept to check if a sequence ID is already been
stored to a file, in which case the annotation is written to that file,
otherwise a random file handles (among the open ones) is chosen.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) – a single or list of file handles (or file
names), from which the GFF annotations are read

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

Example

>>> import glob
>>> files = glob.glob('*.gff')
>>> name_mask = 'split-file-{0}.gff'
>>> split_gff_file(files, name_mask, 5)

	
mgkit.io.gff.write_gff(annotations, file_handle, verbose=True)

	
Changed in version 0.1.12: added verbose argument

Write a GFF to file

	Parameters

	
	annotations (iterable) – iterable that returns GFFKegg
or Annotation instances

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to write to

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a message is logged

 mgkit.io.glimmer module

mgkit.io.glimmer module

	
mgkit.io.glimmer.parse_glimmer3(file_handle)

	Parses an ouput file from glimmer3 and yields the header and prediction
lines. Used to feed the mgkit.io.gff.from_glimmer3() function.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	Yields

	tuple – first element is the sequence of the predicted gene and the
second is the prediction line

 mgkit.io.snpdat module

mgkit.io.snpdat module

SNPDat reader

	
class mgkit.io.snpdat.SNPDatRow(line=None, rev_comp=None)

	Bases: future.types.newobject.newobject

Class containing information ouputted by SNPDat in its result file. One
instance contains information about a row in the file.

	
chr_name

	the queried SNPs chromosome ID

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
chr_pos

	queried SNPs genomic location

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
in_feat

	Whether or not the queried SNP was within a feature

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
region

	Region containing the SNP; either exonic, intronic or
intergenic

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
feat_dist

	Distance to nearest feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feature

	Either the closest feature to the SNP or the feature
containing the SNP

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_features

	number of different features that the SNP is
annotated to

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_num

	number of annotations of the current feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_start

	Start of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_end

	End of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
gene_id

	gene ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_name

	gene name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_id

	transcript ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_name

	transcript name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exon

	exon that contains the current feature and the total
number of annotated exons for the gene containing the feature

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
strand

	strand sense of the feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ann_frame

	annotated reading frame (when contained in the GTF)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
frame

	reading frame estimated by SNPdat

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_stops

	estimated number of stop codons in the estimated
reading frame

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
codon

	codon containing the SNP, position in the codon and
reference base and mutation

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_change

	amino acid for the reference codon and new
amino acid with the mutation in place

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_ref

	reference nucleotide

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]

	
aa_change

	amino acid for the reference codon and new amino
acid with the mutation in place

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
synonymous

	Whether or not the mutation is synonymous

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
protein_id

	protein ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
messages

	messages in the SNPDat line

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
aa_change

	

	
ann_frame

	

	
chr_name

	

	
chr_pos

	

	
codon

	

	
exon

	

	
feat_dist

	

	
feat_end

	

	
feat_num

	

	
feat_start

	

	
feature

	

	
frame

	

	
gene_id

	

	
gene_name

	

	
in_feat

	

	
messages

	

	
nuc_change

	

	
nuc_ref

	

	
num_features

	

	
num_stops

	

	
protein_id

	

	
region

	

	
strand

	

	
synonymous

	

	
transcript_id

	

	
transcript_name

	

	
mgkit.io.snpdat.snpdat_reader(f_handle)

	Simple SNPDat reader.

f_handle: file handle or string for the SNPDat result file

	Returns

	generator of SNPDatRow instances

 mgkit.io.uniprot module

mgkit.io.uniprot module

New in version 0.1.13.

Uniprot file formats

	
mgkit.io.uniprot.parse_uniprot_mappings(file_handle, gene_ids=None, mappings=None, num_lines=10000000)

	Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator with the mappings.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	Yields

	tuple – the first element is the gene ID, the second is the mapping type
and third element is the mapped ID

	
mgkit.io.uniprot.uniprot_mappings_to_dict(file_handle, gene_ids, mappings, num_lines=None)

	
Changed in version 0.3.4: added num_lines

Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator of dictionaries with the mappings requested.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – passed to parse_uniprot_mappings()

	Yields

	tuple – the first element is the gene ID, the second is a dictionary
with all the mappings found, the key is the mapping type and the value
is a list of all mapped IDs

 mgkit.io.utils module

mgkit.io.utils module

Various utilities to help read and process files

	
exception mgkit.io.utils.UnsupportedFormat

	Bases: exceptions.IOError

Raised if the a file can’t be opened with the correct module

	
mgkit.io.utils.compressed_handle(file_handle)

	
New in version 0.1.13.

Tries to wrap a file handle in the appropriate compressed file class.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle

	Returns

	the same file handle if no suitable compressed file class is
found or the new file_handle which supports the compression

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.group_tuples_by_key(iterator, key_func=None, skip_elements=0)

	
New in version 0.3.1.

Group the elements of an iterator by a key and yields the grouped elements.
The elements yielded by the iterator are assumed to be a list or tuple,
with the default key (when key_func is None) being the first of the of
the objects inside that element. This behaviour can be customised by
passing to key_func a function that accept an element and returns the key
to be used.

Note

the iterable assumen that the elements are already sorted by their keys

	Parameters

	
	iterator (iterable) – iterator to be grouped

	key_func (func) – function that accepts a element and returns its
associated key

	skip_elements (int [https://docs.python.org/3/library/functions.html#int]) – number of elements to skip at the start

	Yields

	list – a list of the grouped elements by key

	
mgkit.io.utils.open_file(file_name, mode='r')

	
New in version 0.1.12.

Changed in version 0.3.4: using io.open, always in binary mode

Opens a file using the extension as a guide to which module to use.

Note

Unicode makes for a slower .translate method in Python2, so it’s
best to use the open builtin.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – mode used to open the file

	Returns

	file handle

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.split_write(records, name_mask, write_func, num_files=2)

	
New in version 0.1.13.

Splits the writing of a number of records in a series of files. The
name_mask is used as template for the file names. A string like
“split-files-{0}” can be specified and the function applies format with the
index of the pieces.

	Parameters

	
	records (iterable) – an iterable that returns a object to be saved

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	write_func (func) – a function that is called to write to the files. It
needs to accept a file handles as first argument and the record
returned by records as the second argument

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

 mgkit.kegg module

mgkit.kegg module

Module containing classes and functions to access Kegg data

	
class mgkit.kegg.KeggClientRest(cache=None)

	Bases: future.types.newobject.newobject

Changed in version 0.3.1: added a cache attribute for some methods

Kegg REST client

The class includes methods and data to use the REST API provided by Kegg.
At the moment it provides methods to for ‘link’, ‘list’ and ‘get’
operations,

Kegg REST API [http://www.kegg.jp/kegg/rest/keggapi.html]

	
api_url = 'http://rest.kegg.jp/'

	

	
cache = None

	

	
contact = None

	

	
conv(target_db, source_db, strip=True)

	
New in version 0.3.1.

Kegg Help:

http://rest.kegg.jp/conv/<target_db>/<source_db>

(<target_db> <source_db>) = (<kegg_db> <outside_db>) | (<outside_db> <kegg_db>)

For gene identifiers:
<kegg_db> = <org>
<org> = KEGG organism code or T number
<outside_db> = ncbi-proteinid | ncbi-geneid | uniprot

For chemical substance identifiers:
<kegg_db> = drug | compound | glycan
<outside_db> = pubchem | chebi
http://rest.kegg.jp/conv/<target_db>/<dbentries>

For gene identifiers:
<dbentries> = database entries involving the following <database>
<database> = <org> | genes | ncbi-proteinid | ncbi-geneid | uniprot
<org> = KEGG organism code or T number

For chemical substance identifiers:
<dbentries> = database entries involving the following <database>
<database> = drug | compound | glycan | pubchem | chebi

Examples

>>> kc = KeggClientRest()
>>> kc.conv('ncbi-geneid', 'eco')
{'eco:b0217': {'ncbi-geneid:949009'},
 'eco:b0216': {'ncbi-geneid:947541'},
 'eco:b0215': {'ncbi-geneid:946441'},
 'eco:b0214': {'ncbi-geneid:946955'},
 'eco:b0213': {'ncbi-geneid:944903'},
...
>>> kc.conv('ncbi-proteinid', 'hsa:10458+ece:Z5100')
{'10458': {'NP_059345'}, 'Z5100': {'AAG58814'}}

	
cpd_desc_re = <_sre.SRE_Pattern object>

	

	
cpd_re = <_sre.SRE_Pattern object>

	

	
empty_cache(methods=None)

	
New in version 0.3.1.

Empties the cache completely or for a specific method(s)

	Parameters

	methods (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – string or iterable of strings that are
part of the cache. If None the cache is fully emptied

	
find(query, database, options=None, strip=True)

	
New in version 0.3.1.

Kegg Help:

http://rest.kegg.jp/find/<database>/<query>

	<database> = pathway | module | ko | genome | <org> | compound | glycan |

	reaction | rclass | enzyme | disease | drug | dgroup | environ |
genes | ligand

<org> = KEGG organism code or T number

http://rest.kegg.jp/find/<database>/<query>/<option>

<database> = compound | drug
<option> = formula | exact_mass | mol_weight

Examples

>>> kc = KeggClientRest()
>>> kc.find('CH4', 'compound')
{'C01438': 'Methane; CH4'}
>>> kc.find('K00844', 'genes', strip=False)
{'tped:TPE_0072': 'hexokinase; K00844 hexokinase [EC:2.7.1.1]',
...
>>> kc.find('174.05', 'compound', options='exact_mass')
{'C00493': '174.052823',
 'C04236': '174.052823',
 'C16588': '174.052823',
 'C17696': '174.052823',
 'C18307': '174.052823',
 'C18312': '174.052823',
 'C21281': '174.052823'}

	
get_entry(k_id, option=None)

	
Changed in version 0.3.1: this is now cached

The method abstract the use of the ‘get’ operation in the Kegg API

	Parameters

	
	k_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – kegg id of the resource to get

	option (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional, to specify a format

	
get_ids_names(target='ko', strip=True)

	
New in version 0.1.13.

Changed in version 0.3.1: the call is now cached

Returns a dictionary with the names/description of all the id of a
specific target, (ko, path, cpd, etc.)

If strip=True the id will stripped of the module abbreviation (e.g.
md:M00002->M00002)

	
get_ortholog_pathways()

	Gets ortholog pathways, replace ‘map’ with ‘ko’ in the id

	
get_pathway_links(pathway)

	Returns a dictionary with the mappings KO->compounds for a specific
Pathway or module

	
get_reaction_equations(ids, max_len=10)

	Get the equation for the reactions

	
id_prefix = {'C': 'cpd', 'K': 'ko', 'R': 'rn', 'k': 'map', 'm': 'path'}

	

	
ko_desc_re = <_sre.SRE_Pattern object>

	

	
link(target, source, options=None)

	
New in version 0.2.0.

Implements “link” operation in Kegg REST

http://www.genome.jp/linkdb/

	
link_ids(target, kegg_ids, max_len=50)

	
Changed in version 0.3.1: removed strip and cached the results

The method abstract the use of the ‘link’ operation in the Kegg API

The target parameter can be one of the following:

pathway | brite | module | disease | drug | environ | ko | genome |
<org> | compound | glycan | reaction | rpair | rclass | enzyme

<org> = KEGG organism code or T number

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – the target db

	ids – can be either a single id as a string or a list of ids

	strip (bool [https://docs.python.org/3/library/functions.html#bool]) – if the prefix (e.g. ko:K00601) should be stripped

	max_len (int [https://docs.python.org/3/library/functions.html#int]) – the maximum number of ids to retrieve with each
request, should not exceed 50

	Return dict

	dictionary mapping requested id to target id(s)

	
list_ids(k_id)

	The method abstract the use of the ‘list’ operation in the Kegg API

The k_id parameter can be one of the following:

pathway | brite | module | disease | drug | environ | ko | genome |
<org> | compound | glycan | reaction | rpair | rclass | enzyme

<org> = KEGG organism code or T number

	Parameters

	k_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – kegg database to get list of ids

	Return list

	list of ids in the specified database

	
load_cache(file_handle)

	
New in version 0.3.1.

Loads the cache from file

	
rn_eq_re = <_sre.SRE_Pattern object>

	

	
rn_name_re = <_sre.SRE_Pattern object>

	

	
write_cache(file_handle)

	
New in version 0.3.1.

Write the cache to file

	
class mgkit.kegg.KeggModule(entry=None, old=False)

	Bases: future.types.newobject.newobject

New in version 0.1.13.

Used to extract information from a pathway module entry in Kegg

The entry, as a string, can be either passed at instance creation or with
KeggModule.parse_entry()

	
classes = None

	

	
compounds = None

	

	
entry = ''

	

	
find_submodules()

	
New in version 0.3.0.

Returns the possible submodules, as a list of tuples where the elements
are the first and last compounds in a submodule

	
first_cp

	Returns the first compound in the module

	
last_cp

	Returns the first compound in the module

	
name = ''

	

	
parse_entry(entry)

	Parses a Kegg module entry and change the instance values. By default
the reactions IDs are substituted with the KO IDs

	
parse_entry2(entry)

	
New in version 0.3.0.

Parses a Kegg module entry and change the instance values. By default
the reactions IDs are NOT substituted with the KO IDs.

	
static parse_reaction(line, ko_ids=None)

	
Changed in version 0.3.0: cleaned the parsing

parses the lines with the reactions and substitute reaction IDs with
the corresponding KO IDs if provided

	
reactions = None

	

	
to_edges(id_only=None)

	
Changed in version 0.3.0: added id_only and changed to reflect changes in reactions

Returns the reactions as edges that can be supplied to make graph.

	Parameters

	id_only (None [https://docs.python.org/3/library/constants.html#None], iterable) – if None the returned edges are for the
whole module, if an iterable (converted to a set [https://docs.python.org/3/library/stdtypes.html#set]),
only edges for those reactions are returned

	Yields

	tuple – the elements are the compounds and reactions in the module

	
mgkit.kegg.parse_reaction(line, prefix=('C', 'G'))

	
New in version 0.3.1.

Parses a reaction equation from Kegg, returning the left and right
components. Needs testing

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – reaction string

	Returns

	left and right components as sets

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the

 mgkit.logger module

mgkit.logger module

Module configuring log information

	
class mgkit.logger.ColorFormatter(fmt=None, datefmt=None)

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

	
colors = {'CRITICAL': 'red', 'DEBUG': 'blue', 'ERROR': 'magenta', 'INFO': 'green', 'WARNING': 'yellow'}

	

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
mgkit.logger.config_log(level=10, output=<open file '<stderr>', mode 'w'>)

	Minimal configuration of :mod`logging` module, default to debug level and
the output is printed to standard error

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – logging level

	output (file) – file to which write the log

	
mgkit.logger.config_log_to_file(level=10, output=None)

	
New in version 0.1.14.

Minimal configuration of :mod`logging` module, default to debug level and
the output is printed to script name, using sys.argv[0].

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – logging level

	output (file) – file to which write the log

 mgkit.mappings package

mgkit.mappings package

Submodules

	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

Module contents

 mgkit.mappings.cazy module

mgkit.mappings.cazy module

Module containing classes and functions to deal with CaZy data

 mgkit.mappings.eggnog module

mgkit.mappings.eggnog module

Module containing classes and functions to deal with eggNOG data

Todo

	unify download of data from web

	
class mgkit.mappings.eggnog.NOGInfo(members=None, funccat=None, description=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.1.14.

Changed in version 0.4.0: made file reading compatible with Python 3

Mappings from Uniprot to eggNOG

..note:

load_description is optional

	
get_gene_funccat(gene_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG gene ID

	
get_gene_nog(gene_id)

	Returns the COG/NOG ID of the requested eggNOG gene ID

	
get_nog_funccat(nog_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG COG/NOG ID

	
get_nog_gencat(nog_id)

	Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested eggNOG COG/NOG IDs

	
get_nogs_funccat(nog_ids)

	Returns the functional categories for a list of COG/NOG IDs. Uses
NOGInfo.get_nog_funccat()

	
load_description(file_handle)

	Loads data from NOG.description.txt.gz

file_handle can either an open file or a path

	
load_funccat(file_handle)

	Loads data from NOG.funccat.txt.gz

file_handle can either an open file or a path

	
load_members(file_handle)

	Loads data from NOG.members.txt.gz

file_handle can either an open file or a path

	
mgkit.mappings.eggnog.get_general_eggnog_cat(category)

	
New in version 0.1.14.

Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested single letter functional category (EGGNOG_CAT
keys)

 mgkit.mappings.enzyme module

mgkit.mappings.enzyme module

New in version 0.1.14.

EC mappings

	
mgkit.mappings.enzyme.change_mapping_level(ec_map, level=3)

	
New in version 0.1.14.

Given a dictionary, whose values are dictionaries, in which a key is named
ec and its value is an iterable of EC numbers, returns an iterator that
can be used to build a dictionary with the same top level keys and the
values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary generated by
mgkit.net.uniprot.get_gene_info()

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

Example

>>> from mgkit.net.uniprot import get_gene_info
>>> from mgkit.mappings.enzyme import change_mapping_level
>>> ec_map = get_gene_info('Q9HFQ1', columns='ec')
{'Q9HFQ1': {'ec': '1.1.3.4'}}
>>> dict(change_mapping_level(ec_map, level=2))
{'Q9HFQ1': {'1.1'}}

	
mgkit.mappings.enzyme.get_enzyme_full_name(ec_id, ec_names, sep=', ')

	
New in version 0.2.1.

From a EC identifiers and a dictionary of names builds a comma separated
name (by default) that identifies the function of the enzyme.

	Parameters

	
	ec_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – EC identifier

	ec_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of names that can be produced using
parse_expasy_file()

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – string used to join the names

	Returns

	the enzyme classification name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
mgkit.mappings.enzyme.get_enzyme_level(ec, level=4)

	
New in version 0.1.14.

Returns an enzyme class at a specific level , between 1 and 4 (by default
the most specific, 4)

	Parameters

	
	ec (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string representing an EC number (e.g. 1.2.4.10)

	level (int [https://docs.python.org/3/library/functions.html#int]) – from 1 to 4, to get a different level specificity of in
the enzyme classification

	Returns

	the EC number at the requested specificity

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> from mgkit.mappings.enzyme import get_enzyme_level
>>> get_enzyme_level('1.1.3.4', 1)
'1'
>>> get_enzyme_level('1.1.3.4', 2)
'1.1'
>>> get_enzyme_level('1.1.3.4', 3)
'1.1.3'
>>> get_enzyme_level('1.1.3.4', 4)
'1.1.3.4'

	
mgkit.mappings.enzyme.get_mapping_level(ec_map, level=3)

	
New in version 0.3.0.

Given a dictionary, whose values are iterable of EC numbers, returns an
iterator that can be used to build a dictionary with the same top level
keys and the values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary genes to EC

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

	
mgkit.mappings.enzyme.parse_expasy_file(file_name)

	Used to load enzyme descriptions from the file enzclass.txt on
expasy [http://expasy.org].

The FTP url for enzclass.txt is:
ftp://ftp.expasy.org/databases/enzyme/enzclass.txt

 mgkit.mappings.go module

mgkit.mappings.go module

Module containing classes and functions to deal with Gene Ontology data

 mgkit.mappings.pandas_map module

mgkit.mappings.pandas_map module

Module that contains mapping operations on pandas data structures

	
mgkit.mappings.pandas_map.calc_coefficient_of_variation(dataframe)

	Calculate coefficient of variation for a DataFrame. Uses formula from
Wikipedia [http://en.wikipedia.org/wiki/Coefficient_of_variation]

The formula used is \(\left (1 + \frac {1}{4n} \right) * c_{v}\)
where \(c_{v} = \frac {s}{\bar{x}}\)

	
mgkit.mappings.pandas_map.concatenate_and_rename_tables(dataframes, roots)

	Concatenates a list of pandas.DataFrame instances and renames the
columns prepending a string to each column in each table from a list of
prefixes.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of prefixes to append to the column names of
each DataFrame

	Return DataFrame

	returns a DataFrame instance

Todo

	move to pandas_utils?

	
mgkit.mappings.pandas_map.group_dataframe_by_mapping(dataframe, mapping, root_taxon, name_dict=None)

	Return a pandas.DataFrame filtered by mapping and root taxon, the
values for each column is averaged over all genes mapping to a category.

	Parameters

	
	dataframe (DataFrame) – DataFrame with multindex gene-root

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->genes

	root_taxon (str [https://docs.python.org/3/library/stdtypes.html#str]) – root taxon to group genes

	name_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->name

	Return DataFrame

	DataFrame filtered

	
mgkit.mappings.pandas_map.make_stat_table(dataframes, roots)

	Produces a pandas.DataFrame that summarise the supplied
DataFrames. The stats include mean, stdev and coefficient of variation for
each root taxon.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of root taxa to which each table belongs

	Return DataFrame

	returns a DataFrame instance

 mgkit.mappings.taxon module

mgkit.mappings.taxon module

Module used to map taxon_id to different levels in the taxonomy.

	
mgkit.mappings.taxon.map_taxon_by_id_list(taxon_id, map_ids, func)

	Maps a taxon_id to a list of taxon IDs, using the function supplied.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to map

	map_ids (iterable) – list of taxon IDs to which the taxon_id will be
mapped.

	func (func) – function used to map the IDs, accepts two taxon IDs

	Results:

	
	generator: generator expression of all IDs in map_ids to which taxon_id

	can be mapped.

Example

If mapping a taxon (Prevotella ruminicola) to Prevotella or
Clostridium, using as func mgkit.taxon.is_ancestor() and
taxonomy is an instance of mgkit.taxon.Taxonomy.

>>> import functools
>>> from mgkit.taxon import is_ancestor
>>> func = functools.partial(is_ancestor, taxonomy)
>>> list(map_taxon_by_id_list(839, [838, 1485], func))
[838]

 mgkit.mappings.utils module

mgkit.mappings.utils module

Utilities to map genes

	
mgkit.mappings.utils.count_genes_in_mapping(gene_lists, labels, mapping, normalise=False)

	Maps lists of ids to a mapping dictionary, returning a
pandas.DataFrame in which the rows are the labels provided and
the columns the categories to which the ids map. Each element of the matrix
label-category is the sum of all ids in the relative gene list that maps to
the specific category.

	Parameters

	
	gene_lists (iterable) – an iterable in which each element is a iterable
of ids that can be mapped to mapping

	labels (iterable) – an iterable of strings that defines the labels to
be used in the resulting rows in the pandas.DataFrame; must
have the same length as gene_lists

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form:
gene_id->[cat1, cat2, .., catN]

	normalise (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the counts are normalised over the total for
each row.

	Returns

	a pandas.DataFrame instance

	
mgkit.mappings.utils.group_annotation_by_mapping(annotations, mapping, attr='ko')

	Group annotations by mapping dictionary

	Parameters

	
	annotations (iterable) – iterable of gff.GFFKeg instances

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with mappings for the attribute requested

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation to be used as key in mapping

	Return dict

	dictionary category->annotations

 mgkit.mappings.cazy module

mgkit.mappings.cazy module

Module containing classes and functions to deal with CaZy data

 mgkit.mappings.eggnog module

mgkit.mappings.eggnog module

Module containing classes and functions to deal with eggNOG data

Todo

	unify download of data from web

	
class mgkit.mappings.eggnog.NOGInfo(members=None, funccat=None, description=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.1.14.

Changed in version 0.4.0: made file reading compatible with Python 3

Mappings from Uniprot to eggNOG

..note:

load_description is optional

	
get_gene_funccat(gene_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG gene ID

	
get_gene_nog(gene_id)

	Returns the COG/NOG ID of the requested eggNOG gene ID

	
get_nog_funccat(nog_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG COG/NOG ID

	
get_nog_gencat(nog_id)

	Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested eggNOG COG/NOG IDs

	
get_nogs_funccat(nog_ids)

	Returns the functional categories for a list of COG/NOG IDs. Uses
NOGInfo.get_nog_funccat()

	
load_description(file_handle)

	Loads data from NOG.description.txt.gz

file_handle can either an open file or a path

	
load_funccat(file_handle)

	Loads data from NOG.funccat.txt.gz

file_handle can either an open file or a path

	
load_members(file_handle)

	Loads data from NOG.members.txt.gz

file_handle can either an open file or a path

	
mgkit.mappings.eggnog.get_general_eggnog_cat(category)

	
New in version 0.1.14.

Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested single letter functional category (EGGNOG_CAT
keys)

 mgkit.mappings.enzyme module

mgkit.mappings.enzyme module

New in version 0.1.14.

EC mappings

	
mgkit.mappings.enzyme.change_mapping_level(ec_map, level=3)

	
New in version 0.1.14.

Given a dictionary, whose values are dictionaries, in which a key is named
ec and its value is an iterable of EC numbers, returns an iterator that
can be used to build a dictionary with the same top level keys and the
values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary generated by
mgkit.net.uniprot.get_gene_info()

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

Example

>>> from mgkit.net.uniprot import get_gene_info
>>> from mgkit.mappings.enzyme import change_mapping_level
>>> ec_map = get_gene_info('Q9HFQ1', columns='ec')
{'Q9HFQ1': {'ec': '1.1.3.4'}}
>>> dict(change_mapping_level(ec_map, level=2))
{'Q9HFQ1': {'1.1'}}

	
mgkit.mappings.enzyme.get_enzyme_full_name(ec_id, ec_names, sep=', ')

	
New in version 0.2.1.

From a EC identifiers and a dictionary of names builds a comma separated
name (by default) that identifies the function of the enzyme.

	Parameters

	
	ec_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – EC identifier

	ec_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of names that can be produced using
parse_expasy_file()

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – string used to join the names

	Returns

	the enzyme classification name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
mgkit.mappings.enzyme.get_enzyme_level(ec, level=4)

	
New in version 0.1.14.

Returns an enzyme class at a specific level , between 1 and 4 (by default
the most specific, 4)

	Parameters

	
	ec (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string representing an EC number (e.g. 1.2.4.10)

	level (int [https://docs.python.org/3/library/functions.html#int]) – from 1 to 4, to get a different level specificity of in
the enzyme classification

	Returns

	the EC number at the requested specificity

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> from mgkit.mappings.enzyme import get_enzyme_level
>>> get_enzyme_level('1.1.3.4', 1)
'1'
>>> get_enzyme_level('1.1.3.4', 2)
'1.1'
>>> get_enzyme_level('1.1.3.4', 3)
'1.1.3'
>>> get_enzyme_level('1.1.3.4', 4)
'1.1.3.4'

	
mgkit.mappings.enzyme.get_mapping_level(ec_map, level=3)

	
New in version 0.3.0.

Given a dictionary, whose values are iterable of EC numbers, returns an
iterator that can be used to build a dictionary with the same top level
keys and the values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary genes to EC

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

	
mgkit.mappings.enzyme.parse_expasy_file(file_name)

	Used to load enzyme descriptions from the file enzclass.txt on
expasy [http://expasy.org].

The FTP url for enzclass.txt is:
ftp://ftp.expasy.org/databases/enzyme/enzclass.txt

 mgkit.mappings.go module

mgkit.mappings.go module

Module containing classes and functions to deal with Gene Ontology data

 mgkit.mappings.pandas_map module

mgkit.mappings.pandas_map module

Module that contains mapping operations on pandas data structures

	
mgkit.mappings.pandas_map.calc_coefficient_of_variation(dataframe)

	Calculate coefficient of variation for a DataFrame. Uses formula from
Wikipedia [http://en.wikipedia.org/wiki/Coefficient_of_variation]

The formula used is \(\left (1 + \frac {1}{4n} \right) * c_{v}\)
where \(c_{v} = \frac {s}{\bar{x}}\)

	
mgkit.mappings.pandas_map.concatenate_and_rename_tables(dataframes, roots)

	Concatenates a list of pandas.DataFrame instances and renames the
columns prepending a string to each column in each table from a list of
prefixes.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of prefixes to append to the column names of
each DataFrame

	Return DataFrame

	returns a DataFrame instance

Todo

	move to pandas_utils?

	
mgkit.mappings.pandas_map.group_dataframe_by_mapping(dataframe, mapping, root_taxon, name_dict=None)

	Return a pandas.DataFrame filtered by mapping and root taxon, the
values for each column is averaged over all genes mapping to a category.

	Parameters

	
	dataframe (DataFrame) – DataFrame with multindex gene-root

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->genes

	root_taxon (str [https://docs.python.org/3/library/stdtypes.html#str]) – root taxon to group genes

	name_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->name

	Return DataFrame

	DataFrame filtered

	
mgkit.mappings.pandas_map.make_stat_table(dataframes, roots)

	Produces a pandas.DataFrame that summarise the supplied
DataFrames. The stats include mean, stdev and coefficient of variation for
each root taxon.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of root taxa to which each table belongs

	Return DataFrame

	returns a DataFrame instance

 mgkit.mappings.taxon module

mgkit.mappings.taxon module

Module used to map taxon_id to different levels in the taxonomy.

	
mgkit.mappings.taxon.map_taxon_by_id_list(taxon_id, map_ids, func)

	Maps a taxon_id to a list of taxon IDs, using the function supplied.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to map

	map_ids (iterable) – list of taxon IDs to which the taxon_id will be
mapped.

	func (func) – function used to map the IDs, accepts two taxon IDs

	Results:

	
	generator: generator expression of all IDs in map_ids to which taxon_id

	can be mapped.

Example

If mapping a taxon (Prevotella ruminicola) to Prevotella or
Clostridium, using as func mgkit.taxon.is_ancestor() and
taxonomy is an instance of mgkit.taxon.Taxonomy.

>>> import functools
>>> from mgkit.taxon import is_ancestor
>>> func = functools.partial(is_ancestor, taxonomy)
>>> list(map_taxon_by_id_list(839, [838, 1485], func))
[838]

 mgkit.mappings.utils module

mgkit.mappings.utils module

Utilities to map genes

	
mgkit.mappings.utils.count_genes_in_mapping(gene_lists, labels, mapping, normalise=False)

	Maps lists of ids to a mapping dictionary, returning a
pandas.DataFrame in which the rows are the labels provided and
the columns the categories to which the ids map. Each element of the matrix
label-category is the sum of all ids in the relative gene list that maps to
the specific category.

	Parameters

	
	gene_lists (iterable) – an iterable in which each element is a iterable
of ids that can be mapped to mapping

	labels (iterable) – an iterable of strings that defines the labels to
be used in the resulting rows in the pandas.DataFrame; must
have the same length as gene_lists

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form:
gene_id->[cat1, cat2, .., catN]

	normalise (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the counts are normalised over the total for
each row.

	Returns

	a pandas.DataFrame instance

	
mgkit.mappings.utils.group_annotation_by_mapping(annotations, mapping, attr='ko')

	Group annotations by mapping dictionary

	Parameters

	
	annotations (iterable) – iterable of gff.GFFKeg instances

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with mappings for the attribute requested

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation to be used as key in mapping

	Return dict

	dictionary category->annotations

 mgkit.net package

mgkit.net package

Submodules

	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

Module contents

Package with functions/classes used in accessing network resources

 mgkit.net.embl module

mgkit.net.embl module

Access EMBL Services

	
exception mgkit.net.embl.EntryNotFound

	Bases: exceptions.Exception

Raised if at least one entry was not found by get_sequences_by_ids().
NOT_FOUND is used to check if any entry wasn’t downloaded.

	
exception mgkit.net.embl.NoEntryFound

	Bases: exceptions.Exception

Raised if no sequences where found by get_sequences_by_ids(), the
check is based on the NONE_FOUND variable.

	
mgkit.net.embl.datawarehouse_search(query, domain='sequence', result='sequence_release', display='fasta', offset=0, length=100000, contact=None, download='gzip', url='http://www.ebi.ac.uk/ena/data/warehouse/search?', fields=None)

	
Changed in version 0.2.3: added fields parameter to retrieve tab separated information

New in version 0.1.13.

Perform a datawarehouse search on EMBL dbs. Instructions on the query
language used to query the datawarehouse are available at this page [http://www.ebi.ac.uk/ena/about/browser#data_warehouse] with more details
about the databases domains at this page [http://www.ebi.ac.uk/ena/data/warehouse/usage]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query for the search enging

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – database domain to search

	result (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain result requested

	display (str [https://docs.python.org/3/library/stdtypes.html#str]) – display option (format to retrieve the entries)

	offset (int [https://docs.python.org/3/library/functions.html#int]) – the offset of the search results, defaults to the first

	length (int [https://docs.python.org/3/library/functions.html#int]) – number of results to retrieve at the specified offset
and the limit is automatically set a 100,000 records for query

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email of the user

	download (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of response. Gzip responses are automatically
decompressed

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – base URL for the resource

	fields (None [https://docs.python.org/3/library/constants.html#None], iterable) – must be an iterable of fields to be returned
if display is set to report

	Returns

	the raw request

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Examples

Querying EMBL for all sequences of type rRNA of the Clostridium
genus. Only from the EMBL release database in fasta format:

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'fasta'
>>> data = embl.datawarehouse_search(query, result=result,
... display=display)
>>> len(data)
35919

Each entry taxon_id from the same data can be retrieved using report
as the display option and fields an iterable of fields to just
(‘accession’, tax_id’):

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'report'
>>> fields = ('accession', 'tax_id')
>>> data = embl.datawarehouse_search(query, result=result,
 display=display, fields=fields)

	
mgkit.net.embl.dbfetch(embl_ids, db='embl', contact=None, out_format='seqxml', num_req=10)

	
New in version 0.1.12.

Function that allows to use dbfetch service (REST). More information on the
output formats and the database available at the
service page [http://www.ebi.ac.uk/Tools/dbfetch/syntax.jsp]

	Parameters

	
	embl_ids (str [https://docs.python.org/3/library/stdtypes.html#str], iterable) – list or single sequence id to retrieve

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database from which retrieve the sequence data

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email contact to use as per EMBL guidlines

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format, depends on database

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of ids per request

	Returns

	a list with the results from each request sent. Each request sent
has a maximum number num_req of ids, so the number of items in the
list depends by the number of ids in embl_ids and the value of
num_req.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.net.embl.get_sequences_by_ids(embl_ids, contact=None, out_format='fasta', num_req=10, embl_db='embl_cds', strict=False)

	
Changed in version 0.3.4: removed compress as it’s bases on the requests package

Downloads entries using EBI REST API. It can download one entry at a
time or accept an iterable and all sequences will be downloaded in batches
of at most num_req.

It’s fairly general, so can be customised, from the DB used to the output
format: all batches are simply concatenate.

Note

There are some checks on the some errors reported by the EMBL api, but
not documented, in particular two errors, which are just reported as
text lines in the fasta file (the only one tested at this time).

The are two possible cases:

	if no entry was found NoEntryFound will be raised.

	if at least one entry wasn’t found:

	if strict is False (the default) the error will be just logged as a
debug message

	if strict is True EntryNotFound is raised

	Parameters

	
	embl_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – list of ids to download

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the entry

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of entries to download with each request

	embl_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db to which the ids refer to

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a check on the number of entries retrieved is
performed

	Returns

	the entries requested

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntryNotFound – if at least an entry was not found

	NoEntryFound – if NO entry were found

Warning

The number of sequences that can be downloaded at a time is 11, it
seems, since the returned sequences for each request was at most 11. I
didn’t find any mention of this in the API docs, but it may be a
restriction that’s temporary.

 mgkit.net.pfam module

mgkit.net.pfam module

New in version 0.2.3.

This module defines routine to access Pfam information using a
network connection

	
mgkit.net.pfam.get_pfam_families(key='id')

	
New in version 0.2.3.

Gets a dictionary with the accession/id/description of Pfam families
from Pfam. This list can be accessed using the URL:
http://pfam.xfam.org/families?output=text

The output is a tab separated file where the fields are:

	ACCESSION

	ID

	DESCRIPTION

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – if the value is id, the key of the dictionary is the ID,
otherwise ID swaps position with ACCESSION (the new key)

	Returns

	by default the function returns a dictionary that uses the ID
as key, while the value is a tuple (ACCESSION, DESCRIPTION). ID is the
default because the hmmer2gff - Convert HMMER output to GFF script output uses ID as gene_id
value when using the HMM provided by Pfam

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 mgkit.net.uniprot module

mgkit.net.uniprot module

Contains function and constants for Uniprot access

	
mgkit.net.uniprot.get_gene_info(gene_ids, columns, max_req=50, contact=None)

	
New in version 0.1.12.

Get informations about a list of genes. it uses query_uniprot() to
send the request and format the response in a dictionary.

	Parameters

	
	gene_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – gene id(s) to get informations for

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of columns

	max_req (int [https://docs.python.org/3/library/functions.html#int]) – number of maximum gene_ids per request

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	dictionary where the keys are the gene_ids requested and the
values are dictionaries with the names of the columns requested as
keys and the corresponding values, which can be lists if the values are
are semicolon separated strings.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

To get the taxonomy ids for some genes:

>>> uniprot.get_gene_info(['Q09575', 'Q8DQI6'], ['organism-id'])
{'Q09575': {'organism-id': '6239'}, 'Q8DQI6': {'organism-id': '171101'}}

	
mgkit.net.uniprot.get_gene_info_iter(gene_ids, columns, contact=None, max_req=50)

	
New in version 0.3.3.

Alternative function to get_gene_info(), returning an iterator to
avoid connections timeouts when updating a dictionary

This funciton’s parameters are the same as get_gene_info()

	
mgkit.net.uniprot.get_ko_to_eggnog_mappings(ko_ids, contact=None)

	
New in version 0.1.14.

It’s not possible to map in one go KO IDs to eggNOG IDs via the API in
Uniprot. This function uses query_uniprot() to get all Uniprot IDs
requested and the return a dictionary with all their eggNOG IDs they map
to.

	Parameters

	
	ko_ids (iterable) – an iterable of KO IDs

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	The format of the resulting dictionary is
ko_id -> {eggnog_id1, ..}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.get_mappings(entry_ids, db_from='ID', db_to='EMBL', out_format='tab', contact=None)

	Gets mapping of genes using Uniprot REST API. The db_from and db_to values
are the ones accepted by Uniprot API. The same applies to out_format, the
only processed formats are ‘list’, which returns a list of the mappings
(should be used with one gene only) and ‘tab’, which returns a dictionary
with the mapping. All other values returns a string with the newline
stripped.

	Parameters

	
	entry_ids (iterable) – iterable of ids to be mapped (there’s a limit)
to the maximum length of a HTTP request, so it should be less than 50

	db_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB for elements in entry_ids

	db_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB to which map entry_ids

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the mapping; ‘list’ and ‘tab’ are
processed

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	tuple, dict or str depending on out_format value

	
mgkit.net.uniprot.get_sequences_by_ko(ko_id, taxonomy, contact=None, reviewed=True)

	Gets sequences from Uniprot, restricting to the taxon id passed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – KO id of the sequences to download

	taxonomy (int [https://docs.python.org/3/library/functions.html#int]) – id of the taxon

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested by
Uniprot API)

	reviewed (bool [https://docs.python.org/3/library/functions.html#bool]) – if the sequences requested must be reviewed

	Returns

	string with the fasta file downloaded

	
mgkit.net.uniprot.get_uniprot_ec_mappings(gene_ids, contact=None)

	
New in version 0.1.14.

Shortcut to download EC mapping of Uniprot IDs. Uses get_gene_info()
passing the correct column (ec).

	
mgkit.net.uniprot.ko_to_mapping(ko_id, query, columns, contact=None)

	Returns the mappings to the supplied KO. Can be used for any id, the
query format is free as well as the columns returned. The only
restriction is using a tab format, that is parsed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – id used in the query

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query passed to the Uniprot API, ko_id is replaced
using str.format()

	column (str [https://docs.python.org/3/library/stdtypes.html#str]) – column used in the results table used to map the ids

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

Note

each mapping in the column is separated by a ;

	
mgkit.net.uniprot.parse_uniprot_response(data, simple=True)

	
New in version 0.1.12.

Parses raw response from a Uniprot query (tab format only) from functions
like query_uniprot() into a dictionary. It requires that the first
column is the entry id (or any other unique id).

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – string response from Uniprot

	simple (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the number of columns is 1, the dictionary
returned has a simplified structure

	Returns

	The format of the resulting dictionary is
entry_id -> {column1 -> value, column2 -> value, ..} unless there’s
only one column and simple is True, in which case the value is
equal to the value of the only column.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.query_uniprot(query, columns=None, format='tab', limit=None, contact=None, baseurl='http://www.uniprot.org/uniprot/')

	
New in version 0.1.12.

Changed in version 0.1.13: added baseurl and made columns a default argument

Queries Uniprot, returning the raw response in tbe format specified. More
informations at the page [http://www.uniprot.org/faq/28]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query to submit, as put in the input box

	columns (None [https://docs.python.org/3/library/constants.html#None], iterable) – list of columns to return

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – response format

	limit (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – number of entries to return or None to request all
entries

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	baseurl (str [https://docs.python.org/3/library/stdtypes.html#str]) – base url for the REST API, can be either
UNIPROT_GET or UNIPROT_TAXONOMY

	Returns

	raw response from the query

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

To get the taxonomy ids for some genes:

>>> uniprot.query_uniprot('Q09575 OR Q8DQI6', ['id', 'organism-id'])
'Entry\tOrganism ID\nQ8DQI6\t171101\nQ09575\t6239\n'

Warning

because of limits in the length of URLs, it’s advised to limit the
length of the query string.

 mgkit.net.utils module

mgkit.net.utils module

Utility functions for the network package

	
mgkit.net.utils.url_open(url, data=None, headers=None, agent=None, get=True, stream=False)

	
Changed in version 0.3.4: now uses requests

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – parameters to pass to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – any additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str]) – user agent to use

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the request is a GET, False for POST

	stream (bool [https://docs.python.org/3/library/functions.html#bool]) – returns an iterator to stream over

	url – url to request

	data – data to add to the request

	compress (bool [https://docs.python.org/3/library/functions.html#bool]) – if the response should be compressed

	agent – if supplied, the ‘User-Agent’ header we’ll be added to
the request

	Returns

	the response handle

	
mgkit.net.utils.url_read(url, data=None, agent=None, headers=None, get=True)

	
Changed in version 0.3.4: now uses requests, removed compressed and added headers, get

Opens an URL and reads the

Wrapper of url_open() which reads the full response

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – data to add to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – if supplied, the ‘User-Agent’ header we’ll be
added to the request

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – uses a GET operation if True, POST if False

	Returns

	the response data

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 mgkit.net.embl module

mgkit.net.embl module

Access EMBL Services

	
exception mgkit.net.embl.EntryNotFound

	Bases: exceptions.Exception

Raised if at least one entry was not found by get_sequences_by_ids().
NOT_FOUND is used to check if any entry wasn’t downloaded.

	
exception mgkit.net.embl.NoEntryFound

	Bases: exceptions.Exception

Raised if no sequences where found by get_sequences_by_ids(), the
check is based on the NONE_FOUND variable.

	
mgkit.net.embl.datawarehouse_search(query, domain='sequence', result='sequence_release', display='fasta', offset=0, length=100000, contact=None, download='gzip', url='http://www.ebi.ac.uk/ena/data/warehouse/search?', fields=None)

	
Changed in version 0.2.3: added fields parameter to retrieve tab separated information

New in version 0.1.13.

Perform a datawarehouse search on EMBL dbs. Instructions on the query
language used to query the datawarehouse are available at this page [http://www.ebi.ac.uk/ena/about/browser#data_warehouse] with more details
about the databases domains at this page [http://www.ebi.ac.uk/ena/data/warehouse/usage]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query for the search enging

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – database domain to search

	result (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain result requested

	display (str [https://docs.python.org/3/library/stdtypes.html#str]) – display option (format to retrieve the entries)

	offset (int [https://docs.python.org/3/library/functions.html#int]) – the offset of the search results, defaults to the first

	length (int [https://docs.python.org/3/library/functions.html#int]) – number of results to retrieve at the specified offset
and the limit is automatically set a 100,000 records for query

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email of the user

	download (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of response. Gzip responses are automatically
decompressed

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – base URL for the resource

	fields (None [https://docs.python.org/3/library/constants.html#None], iterable) – must be an iterable of fields to be returned
if display is set to report

	Returns

	the raw request

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Examples

Querying EMBL for all sequences of type rRNA of the Clostridium
genus. Only from the EMBL release database in fasta format:

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'fasta'
>>> data = embl.datawarehouse_search(query, result=result,
... display=display)
>>> len(data)
35919

Each entry taxon_id from the same data can be retrieved using report
as the display option and fields an iterable of fields to just
(‘accession’, tax_id’):

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'report'
>>> fields = ('accession', 'tax_id')
>>> data = embl.datawarehouse_search(query, result=result,
 display=display, fields=fields)

	
mgkit.net.embl.dbfetch(embl_ids, db='embl', contact=None, out_format='seqxml', num_req=10)

	
New in version 0.1.12.

Function that allows to use dbfetch service (REST). More information on the
output formats and the database available at the
service page [http://www.ebi.ac.uk/Tools/dbfetch/syntax.jsp]

	Parameters

	
	embl_ids (str [https://docs.python.org/3/library/stdtypes.html#str], iterable) – list or single sequence id to retrieve

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database from which retrieve the sequence data

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email contact to use as per EMBL guidlines

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format, depends on database

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of ids per request

	Returns

	a list with the results from each request sent. Each request sent
has a maximum number num_req of ids, so the number of items in the
list depends by the number of ids in embl_ids and the value of
num_req.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.net.embl.get_sequences_by_ids(embl_ids, contact=None, out_format='fasta', num_req=10, embl_db='embl_cds', strict=False)

	
Changed in version 0.3.4: removed compress as it’s bases on the requests package

Downloads entries using EBI REST API. It can download one entry at a
time or accept an iterable and all sequences will be downloaded in batches
of at most num_req.

It’s fairly general, so can be customised, from the DB used to the output
format: all batches are simply concatenate.

Note

There are some checks on the some errors reported by the EMBL api, but
not documented, in particular two errors, which are just reported as
text lines in the fasta file (the only one tested at this time).

The are two possible cases:

	if no entry was found NoEntryFound will be raised.

	if at least one entry wasn’t found:

	if strict is False (the default) the error will be just logged as a
debug message

	if strict is True EntryNotFound is raised

	Parameters

	
	embl_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – list of ids to download

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the entry

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of entries to download with each request

	embl_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db to which the ids refer to

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a check on the number of entries retrieved is
performed

	Returns

	the entries requested

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntryNotFound – if at least an entry was not found

	NoEntryFound – if NO entry were found

Warning

The number of sequences that can be downloaded at a time is 11, it
seems, since the returned sequences for each request was at most 11. I
didn’t find any mention of this in the API docs, but it may be a
restriction that’s temporary.

 mgkit.net.pfam module

mgkit.net.pfam module

New in version 0.2.3.

This module defines routine to access Pfam information using a
network connection

	
mgkit.net.pfam.get_pfam_families(key='id')

	
New in version 0.2.3.

Gets a dictionary with the accession/id/description of Pfam families
from Pfam. This list can be accessed using the URL:
http://pfam.xfam.org/families?output=text

The output is a tab separated file where the fields are:

	ACCESSION

	ID

	DESCRIPTION

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – if the value is id, the key of the dictionary is the ID,
otherwise ID swaps position with ACCESSION (the new key)

	Returns

	by default the function returns a dictionary that uses the ID
as key, while the value is a tuple (ACCESSION, DESCRIPTION). ID is the
default because the hmmer2gff - Convert HMMER output to GFF script output uses ID as gene_id
value when using the HMM provided by Pfam

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 mgkit.net.uniprot module

mgkit.net.uniprot module

Contains function and constants for Uniprot access

	
mgkit.net.uniprot.get_gene_info(gene_ids, columns, max_req=50, contact=None)

	
New in version 0.1.12.

Get informations about a list of genes. it uses query_uniprot() to
send the request and format the response in a dictionary.

	Parameters

	
	gene_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – gene id(s) to get informations for

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of columns

	max_req (int [https://docs.python.org/3/library/functions.html#int]) – number of maximum gene_ids per request

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	dictionary where the keys are the gene_ids requested and the
values are dictionaries with the names of the columns requested as
keys and the corresponding values, which can be lists if the values are
are semicolon separated strings.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

To get the taxonomy ids for some genes:

>>> uniprot.get_gene_info(['Q09575', 'Q8DQI6'], ['organism-id'])
{'Q09575': {'organism-id': '6239'}, 'Q8DQI6': {'organism-id': '171101'}}

	
mgkit.net.uniprot.get_gene_info_iter(gene_ids, columns, contact=None, max_req=50)

	
New in version 0.3.3.

Alternative function to get_gene_info(), returning an iterator to
avoid connections timeouts when updating a dictionary

This funciton’s parameters are the same as get_gene_info()

	
mgkit.net.uniprot.get_ko_to_eggnog_mappings(ko_ids, contact=None)

	
New in version 0.1.14.

It’s not possible to map in one go KO IDs to eggNOG IDs via the API in
Uniprot. This function uses query_uniprot() to get all Uniprot IDs
requested and the return a dictionary with all their eggNOG IDs they map
to.

	Parameters

	
	ko_ids (iterable) – an iterable of KO IDs

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	The format of the resulting dictionary is
ko_id -> {eggnog_id1, ..}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.get_mappings(entry_ids, db_from='ID', db_to='EMBL', out_format='tab', contact=None)

	Gets mapping of genes using Uniprot REST API. The db_from and db_to values
are the ones accepted by Uniprot API. The same applies to out_format, the
only processed formats are ‘list’, which returns a list of the mappings
(should be used with one gene only) and ‘tab’, which returns a dictionary
with the mapping. All other values returns a string with the newline
stripped.

	Parameters

	
	entry_ids (iterable) – iterable of ids to be mapped (there’s a limit)
to the maximum length of a HTTP request, so it should be less than 50

	db_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB for elements in entry_ids

	db_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB to which map entry_ids

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the mapping; ‘list’ and ‘tab’ are
processed

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	tuple, dict or str depending on out_format value

	
mgkit.net.uniprot.get_sequences_by_ko(ko_id, taxonomy, contact=None, reviewed=True)

	Gets sequences from Uniprot, restricting to the taxon id passed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – KO id of the sequences to download

	taxonomy (int [https://docs.python.org/3/library/functions.html#int]) – id of the taxon

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested by
Uniprot API)

	reviewed (bool [https://docs.python.org/3/library/functions.html#bool]) – if the sequences requested must be reviewed

	Returns

	string with the fasta file downloaded

	
mgkit.net.uniprot.get_uniprot_ec_mappings(gene_ids, contact=None)

	
New in version 0.1.14.

Shortcut to download EC mapping of Uniprot IDs. Uses get_gene_info()
passing the correct column (ec).

	
mgkit.net.uniprot.ko_to_mapping(ko_id, query, columns, contact=None)

	Returns the mappings to the supplied KO. Can be used for any id, the
query format is free as well as the columns returned. The only
restriction is using a tab format, that is parsed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – id used in the query

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query passed to the Uniprot API, ko_id is replaced
using str.format()

	column (str [https://docs.python.org/3/library/stdtypes.html#str]) – column used in the results table used to map the ids

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

Note

each mapping in the column is separated by a ;

	
mgkit.net.uniprot.parse_uniprot_response(data, simple=True)

	
New in version 0.1.12.

Parses raw response from a Uniprot query (tab format only) from functions
like query_uniprot() into a dictionary. It requires that the first
column is the entry id (or any other unique id).

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – string response from Uniprot

	simple (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the number of columns is 1, the dictionary
returned has a simplified structure

	Returns

	The format of the resulting dictionary is
entry_id -> {column1 -> value, column2 -> value, ..} unless there’s
only one column and simple is True, in which case the value is
equal to the value of the only column.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.query_uniprot(query, columns=None, format='tab', limit=None, contact=None, baseurl='http://www.uniprot.org/uniprot/')

	
New in version 0.1.12.

Changed in version 0.1.13: added baseurl and made columns a default argument

Queries Uniprot, returning the raw response in tbe format specified. More
informations at the page [http://www.uniprot.org/faq/28]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query to submit, as put in the input box

	columns (None [https://docs.python.org/3/library/constants.html#None], iterable) – list of columns to return

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – response format

	limit (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – number of entries to return or None to request all
entries

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	baseurl (str [https://docs.python.org/3/library/stdtypes.html#str]) – base url for the REST API, can be either
UNIPROT_GET or UNIPROT_TAXONOMY

	Returns

	raw response from the query

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

To get the taxonomy ids for some genes:

>>> uniprot.query_uniprot('Q09575 OR Q8DQI6', ['id', 'organism-id'])
'Entry\tOrganism ID\nQ8DQI6\t171101\nQ09575\t6239\n'

Warning

because of limits in the length of URLs, it’s advised to limit the
length of the query string.

 mgkit.net.utils module

mgkit.net.utils module

Utility functions for the network package

	
mgkit.net.utils.url_open(url, data=None, headers=None, agent=None, get=True, stream=False)

	
Changed in version 0.3.4: now uses requests

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – parameters to pass to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – any additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str]) – user agent to use

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the request is a GET, False for POST

	stream (bool [https://docs.python.org/3/library/functions.html#bool]) – returns an iterator to stream over

	url – url to request

	data – data to add to the request

	compress (bool [https://docs.python.org/3/library/functions.html#bool]) – if the response should be compressed

	agent – if supplied, the ‘User-Agent’ header we’ll be added to
the request

	Returns

	the response handle

	
mgkit.net.utils.url_read(url, data=None, agent=None, headers=None, get=True)

	
Changed in version 0.3.4: now uses requests, removed compressed and added headers, get

Opens an URL and reads the

Wrapper of url_open() which reads the full response

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – data to add to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – if supplied, the ‘User-Agent’ header we’ll be
added to the request

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – uses a GET operation if True, POST if False

	Returns

	the response data

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 mgkit.plots package

mgkit.plots package

Submodules

	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

Module contents

New in version 0.1.14.

 mgkit.plots.abund module

mgkit.plots.abund module

New in version 0.1.15.

Module to plot relative abundances in a 1D or 3D projection

	
mgkit.plots.abund.col_func_firstel(key, colors=None)

	

	
mgkit.plots.abund.col_func_name(key, func=None, colors=None)

	

	
mgkit.plots.abund.col_func_taxon(taxon_id, taxonomy, anc_ids, colpal)

	

	
mgkit.plots.abund.draw_1d_grid(ax, labels=['LAM', 'SAM'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a 1D axis, to display propotions.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.draw_axis_internal_triangle(ax, color='r', linewidth=2.0)

	
New in version 0.2.5.

Draws a triangle that indicates the 50% limit for all 3 samples

	Parameters

	
	ax – axis to use

	color (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – color used to draw the triangle

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width

	
mgkit.plots.abund.draw_circles(ax, data, col_func=<function col_func_name>, csize=200, alpha=0.5, sizescale=None, order=None, linewidths=0.0, edgecolor='none')

	
Changed in version 0.2.0: changed internals and added return value

Draws a scatter plot over either a planar-simplex projection, if the number
of coordinates is 3, or in a 1D axis.

If the number of coordinates is 3, project_point() is used to project
the point in 2 coordinates. The coordinates are converted in proportions
internally.

	Parameters

	
	ax – axis to plot on

	data (pandas.DataFrame) – a DataFrame with 2 for a 1D plot or 3 columns
for a planar-simplex

	col_func (func) – a function that accept a parameter, an element of the
DataFrame index and returns a colour for it

	csize (int [https://docs.python.org/3/library/functions.html#int]) – the base size of the circles

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – transparency of the circles, between 0 and 1 included

	sizescale (None [https://docs.python.org/3/library/constants.html#None], pandas.Series) – a Series or dictionary with the same
elements as the Index of data, whose values are the size factors
that are multiplied to csize. If None, the size of the
circles is equal to csize

	order (None [https://docs.python.org/3/library/constants.html#None], iterable) – iterable with the elements of data Index, to
specify the order in which the circles must be plotted. If None,
the order is the same as data.index

	linewidths (float [https://docs.python.org/3/library/functions.html#float]) – width of the circle line

	edgecolor (str [https://docs.python.org/3/library/stdtypes.html#str]) – color of the circle line

	Returns

	the return value of matplotlib scatter

	Return type

	PathCollection

Note

To not have circle lines, edgecolor must be ‘none’ and
linewidths equal 0

	
mgkit.plots.abund.draw_triangle_grid(ax, labels=['LAM', 'SAM', 'EAM'], linewidth=1.0, styles=['-', ':', '--'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a triangle as axes, for a planar-simplex projection.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	styles (None [https://docs.python.org/3/library/constants.html#None], iterable) – either None for solid lines or matplotlib
line markers. These are in sync between the internal lines and
the axes.

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width for the axes, the internal lines are
equal to 0.75 * linewidth

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.project_point(point)

	Project a tuple containing coordinates (i.e. x, y, z) to planar-simplex.

	Parameters

	point (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – contains the three coordinates to project

	Returns

	the projected point in a planar-simplex

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

 mgkit.plots.boxplot module

mgkit.plots.boxplot module

New in version 0.1.14.

Code related to boxplots

	
mgkit.plots.boxplot.add_values_to_boxplot(dataframe, ax, plot_data, plot_order, data_colours=None, alpha=0.5, s=80, marker='o', linewidth=0.01, box_vert=False)

	
New in version 0.1.13.

Changed in version 0.1.14: added box_vert parameter

Changed in version 0.1.16: changed default value for linewidth

Adds the values of a dataframe used in boxplot_dataframe() to the
plot. linewidth must be higher than 0 if a marker like | is used.

A list of markers is available at
this page [http://matplotlib.org/api/markers_api.html]

Warning

Contrary to boxplot_dataframe(), the boxplot default is
horizontal (box_vert). The default will change in a later version.

	Parameters

	
	dataframe – dataframe with the values to plot

	ax – an axis instance

	plot_data – return value from boxplot_dataframe()

	plot_order (iterable) – row order used to plot the boxes

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – colors used for the values

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – alpha value for the colour

	s (int [https://docs.python.org/3/library/functions.html#int]) – size of the marker drawn

	marker (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the accepted matplotlib markers

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – width of the line used to draw the marker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the original boxplot is vertical or not

	
mgkit.plots.boxplot.add_significance_to_boxplot(sign_indices, ax, pos, box_vert=True, fontsize=16)

	
New in version 0.1.16.

Add significance groups to boxplots

	Parameters

	
	sign_indices (iterable) – iterable in which each element is a tuple;
each element of the tuple is the numerical index of the position of
the significant boxplot

	ax – an axis instance

	pos (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the 2 values are the coordinates for the top line, and the
the lowest bound for the whisker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if the boxplot is vertical

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – size for the * (star)

	
mgkit.plots.boxplot.boxplot_dataframe_multindex(dataframe, axes, plot_order=None, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True)

	
New in version 0.1.13.

Todo

documentation

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An axes object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	axes – an axes instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X axes

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	Returns

	the plot data same as matplotlib boxplot function

	
mgkit.plots.boxplot.boxplot_dataframe(dataframe, plot_order, ax, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True, widths=0.5)

	
New in version 0.1.7: To move from an all-in-one drawing to a more modular one.

Changed in version 0.1.13: added box_vert parameter

Changed in version 0.1.16: added widths parameter

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An ax object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	ax – an axis instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X ax

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if False the boxplots are drawn horizontally

	widths (float [https://docs.python.org/3/library/functions.html#float]) – width (scalar or array) of the boxplots width(s)

	Returns

	the plot data; same as matplotlib boxplot function

 mgkit.plots.colors module

mgkit.plots.colors module

New in version 0.1.14.

Contains code related to colour

	
mgkit.plots.colors.float_to_hex_color(r, g, b)

	
New in version 0.1.14.

Converts RGB float values to Hexadecimal value string

	
mgkit.plots.colors.palette_float_to_hex(palette)

	
New in version 0.1.16.

Applies float_to_hex_color() to an iterable of colors

 mgkit.plots.heatmap module

mgkit.plots.heatmap module

New in version 0.1.14.

Code related to heatmaps.

	
mgkit.plots.heatmap.baseheatmap(data, ax, norm=None, cmap=None, xticks=None, yticks=None, fontsize=18, meshopts=None, annot=False, annotopts=None)

	
Changed in version 0.2.3: added annot and annot_args arguments

A basic heatmap using matplotlib.pyplot.pcolormesh(). It expect a
pandas.DataFrame.

Note

Rows a plot bottom to up, while the columns left to right. Change the
order of the DataFrame if needed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	xticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_xticklabels

	yticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_yticklabels

	fontsize (int [https://docs.python.org/3/library/functions.html#int]) – font size to use for the labels

	meshopts (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to
matplotlib.pyplot.pcolormesh()

	annot (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the values of the matrix will be added

	annot_args (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the options for the
annotations. The option format is a function that returns the
formatted number, defaults to a number with no decimal part

	Returns

	the return value of
matplotlib.pyplot.pcolormesh()

	Return type

	matplotlib.collections.QuadMesh

	
mgkit.plots.heatmap.grouped_spine(groups, labels, ax, which='y', spine='right', spine_opts=None, start=0)

	
Changed in version 0.2.0: added va, ha keys to spine_opts, changed the label positioning

Changed in version 0.2.5: added start parameter

Changes the spine of an heatmap axis given the groups of labels.

Note

It should work for any plot, but was not tested

	Parameters

	
	groups (iterable) – a nested list where each is element is a list
containing the labels that belong to that group.

	labels (iterable) – an iterable with the labels of the groups. Needs to
be in the same order as groups

	ax – axis to use (same as heatmap)

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) – to specify the axis, either x or y

	spine (str [https://docs.python.org/3/library/stdtypes.html#str]) – position of the spine. if which is x accepted values
are top and bottom, if which is y left and right are
accepted

	spine_opts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to the spine class

	start (int [https://docs.python.org/3/library/functions.html#int]) – the start coordinate for the grouped spine. Defaults to 0

	
mgkit.plots.heatmap.dendrogram(data, ax, method='complete', orientation='top', use_dist=True, dist_func=<function pdist>)

	
Changed in version 0.1.16: added use_dist and dist_func parameters

Plots a dendrogram of the clustered rows of the given matrix; if the
columns are to be clustered, the transposed matrix needs to be passed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – clustering method used, internally
scipy.cluster.hierarchy.linkage() is used.

	orientation (str [https://docs.python.org/3/library/stdtypes.html#str]) – direction for the plot. top, bottom, left and
right are accepted; top will draw the leaves at the bottom.

	use_dist (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function dist_func will be applied to
data to get a distance matrix

	dist_func (func) – distance function to be used

	Returns

	The dendrogram plotted, as returned by
scipy.cluster.hierarchy.dendrogram()

	
mgkit.plots.heatmap.heatmap_clustered(data, figsize=(10, 5), cmap=None, norm=None)

	Plots a heatmap clustered on both rows and columns.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – passed to mgkit.plots.utils.get_grid_figure()

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

 mgkit.plots.utils module

mgkit.plots.utils module

New in version 0.1.14.

Misc code

	
mgkit.plots.utils.get_grid_figure(rows, cols, dpi=300, figsize=(10, 20), **kwd)

	
New in version 0.1.13.

Simple wrapper to init a GridSpec figure

	Parameters

	
	rows (int [https://docs.python.org/3/library/functions.html#int]) – number of rows

	columns (int [https://docs.python.org/3/library/functions.html#int]) – number of columns

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.get_single_figure(dpi=300, figsize=(10, 20), aspect='auto')

	
Changed in version 0.1.14: added aspect parameter

Simple wrapper to init a single figure

	Parameters

	
	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	aspect (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]) – aspect ratio to be passed to figure.add_subplot

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.legend_patches(labels, colors)

	
New in version 0.3.1.

Makes handles (using matplotlib Patch) that can be passed to the legend
method of a matplotlib axes instance

	Parameters

	
	labels (iterable) – iterable that yields a label

	colors (iterable) – iterable that yields a valid matplotlib color

	Returns

	list of patches that can be passed to the handles parameter in
the ax.legend method

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 mgkit.plots.abund module

mgkit.plots.abund module

New in version 0.1.15.

Module to plot relative abundances in a 1D or 3D projection

	
mgkit.plots.abund.col_func_firstel(key, colors=None)

	

	
mgkit.plots.abund.col_func_name(key, func=None, colors=None)

	

	
mgkit.plots.abund.col_func_taxon(taxon_id, taxonomy, anc_ids, colpal)

	

	
mgkit.plots.abund.draw_1d_grid(ax, labels=['LAM', 'SAM'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a 1D axis, to display propotions.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.draw_axis_internal_triangle(ax, color='r', linewidth=2.0)

	
New in version 0.2.5.

Draws a triangle that indicates the 50% limit for all 3 samples

	Parameters

	
	ax – axis to use

	color (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – color used to draw the triangle

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width

	
mgkit.plots.abund.draw_circles(ax, data, col_func=<function col_func_name>, csize=200, alpha=0.5, sizescale=None, order=None, linewidths=0.0, edgecolor='none')

	
Changed in version 0.2.0: changed internals and added return value

Draws a scatter plot over either a planar-simplex projection, if the number
of coordinates is 3, or in a 1D axis.

If the number of coordinates is 3, project_point() is used to project
the point in 2 coordinates. The coordinates are converted in proportions
internally.

	Parameters

	
	ax – axis to plot on

	data (pandas.DataFrame) – a DataFrame with 2 for a 1D plot or 3 columns
for a planar-simplex

	col_func (func) – a function that accept a parameter, an element of the
DataFrame index and returns a colour for it

	csize (int [https://docs.python.org/3/library/functions.html#int]) – the base size of the circles

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – transparency of the circles, between 0 and 1 included

	sizescale (None [https://docs.python.org/3/library/constants.html#None], pandas.Series) – a Series or dictionary with the same
elements as the Index of data, whose values are the size factors
that are multiplied to csize. If None, the size of the
circles is equal to csize

	order (None [https://docs.python.org/3/library/constants.html#None], iterable) – iterable with the elements of data Index, to
specify the order in which the circles must be plotted. If None,
the order is the same as data.index

	linewidths (float [https://docs.python.org/3/library/functions.html#float]) – width of the circle line

	edgecolor (str [https://docs.python.org/3/library/stdtypes.html#str]) – color of the circle line

	Returns

	the return value of matplotlib scatter

	Return type

	PathCollection

Note

To not have circle lines, edgecolor must be ‘none’ and
linewidths equal 0

	
mgkit.plots.abund.draw_triangle_grid(ax, labels=['LAM', 'SAM', 'EAM'], linewidth=1.0, styles=['-', ':', '--'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a triangle as axes, for a planar-simplex projection.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	styles (None [https://docs.python.org/3/library/constants.html#None], iterable) – either None for solid lines or matplotlib
line markers. These are in sync between the internal lines and
the axes.

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width for the axes, the internal lines are
equal to 0.75 * linewidth

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.project_point(point)

	Project a tuple containing coordinates (i.e. x, y, z) to planar-simplex.

	Parameters

	point (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – contains the three coordinates to project

	Returns

	the projected point in a planar-simplex

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

 mgkit.plots.boxplot module

mgkit.plots.boxplot module

New in version 0.1.14.

Code related to boxplots

	
mgkit.plots.boxplot.add_values_to_boxplot(dataframe, ax, plot_data, plot_order, data_colours=None, alpha=0.5, s=80, marker='o', linewidth=0.01, box_vert=False)

	
New in version 0.1.13.

Changed in version 0.1.14: added box_vert parameter

Changed in version 0.1.16: changed default value for linewidth

Adds the values of a dataframe used in boxplot_dataframe() to the
plot. linewidth must be higher than 0 if a marker like | is used.

A list of markers is available at
this page [http://matplotlib.org/api/markers_api.html]

Warning

Contrary to boxplot_dataframe(), the boxplot default is
horizontal (box_vert). The default will change in a later version.

	Parameters

	
	dataframe – dataframe with the values to plot

	ax – an axis instance

	plot_data – return value from boxplot_dataframe()

	plot_order (iterable) – row order used to plot the boxes

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – colors used for the values

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – alpha value for the colour

	s (int [https://docs.python.org/3/library/functions.html#int]) – size of the marker drawn

	marker (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the accepted matplotlib markers

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – width of the line used to draw the marker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the original boxplot is vertical or not

	
mgkit.plots.boxplot.add_significance_to_boxplot(sign_indices, ax, pos, box_vert=True, fontsize=16)

	
New in version 0.1.16.

Add significance groups to boxplots

	Parameters

	
	sign_indices (iterable) – iterable in which each element is a tuple;
each element of the tuple is the numerical index of the position of
the significant boxplot

	ax – an axis instance

	pos (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the 2 values are the coordinates for the top line, and the
the lowest bound for the whisker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if the boxplot is vertical

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – size for the * (star)

	
mgkit.plots.boxplot.boxplot_dataframe_multindex(dataframe, axes, plot_order=None, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True)

	
New in version 0.1.13.

Todo

documentation

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An axes object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	axes – an axes instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X axes

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	Returns

	the plot data same as matplotlib boxplot function

	
mgkit.plots.boxplot.boxplot_dataframe(dataframe, plot_order, ax, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True, widths=0.5)

	
New in version 0.1.7: To move from an all-in-one drawing to a more modular one.

Changed in version 0.1.13: added box_vert parameter

Changed in version 0.1.16: added widths parameter

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An ax object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	ax – an axis instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X ax

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if False the boxplots are drawn horizontally

	widths (float [https://docs.python.org/3/library/functions.html#float]) – width (scalar or array) of the boxplots width(s)

	Returns

	the plot data; same as matplotlib boxplot function

 mgkit.plots.colors module

mgkit.plots.colors module

New in version 0.1.14.

Contains code related to colour

	
mgkit.plots.colors.float_to_hex_color(r, g, b)

	
New in version 0.1.14.

Converts RGB float values to Hexadecimal value string

	
mgkit.plots.colors.palette_float_to_hex(palette)

	
New in version 0.1.16.

Applies float_to_hex_color() to an iterable of colors

 mgkit.plots.heatmap module

mgkit.plots.heatmap module

New in version 0.1.14.

Code related to heatmaps.

	
mgkit.plots.heatmap.baseheatmap(data, ax, norm=None, cmap=None, xticks=None, yticks=None, fontsize=18, meshopts=None, annot=False, annotopts=None)

	
Changed in version 0.2.3: added annot and annot_args arguments

A basic heatmap using matplotlib.pyplot.pcolormesh(). It expect a
pandas.DataFrame.

Note

Rows a plot bottom to up, while the columns left to right. Change the
order of the DataFrame if needed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	xticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_xticklabels

	yticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_yticklabels

	fontsize (int [https://docs.python.org/3/library/functions.html#int]) – font size to use for the labels

	meshopts (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to
matplotlib.pyplot.pcolormesh()

	annot (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the values of the matrix will be added

	annot_args (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the options for the
annotations. The option format is a function that returns the
formatted number, defaults to a number with no decimal part

	Returns

	the return value of
matplotlib.pyplot.pcolormesh()

	Return type

	matplotlib.collections.QuadMesh

	
mgkit.plots.heatmap.grouped_spine(groups, labels, ax, which='y', spine='right', spine_opts=None, start=0)

	
Changed in version 0.2.0: added va, ha keys to spine_opts, changed the label positioning

Changed in version 0.2.5: added start parameter

Changes the spine of an heatmap axis given the groups of labels.

Note

It should work for any plot, but was not tested

	Parameters

	
	groups (iterable) – a nested list where each is element is a list
containing the labels that belong to that group.

	labels (iterable) – an iterable with the labels of the groups. Needs to
be in the same order as groups

	ax – axis to use (same as heatmap)

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) – to specify the axis, either x or y

	spine (str [https://docs.python.org/3/library/stdtypes.html#str]) – position of the spine. if which is x accepted values
are top and bottom, if which is y left and right are
accepted

	spine_opts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to the spine class

	start (int [https://docs.python.org/3/library/functions.html#int]) – the start coordinate for the grouped spine. Defaults to 0

	
mgkit.plots.heatmap.dendrogram(data, ax, method='complete', orientation='top', use_dist=True, dist_func=<function pdist>)

	
Changed in version 0.1.16: added use_dist and dist_func parameters

Plots a dendrogram of the clustered rows of the given matrix; if the
columns are to be clustered, the transposed matrix needs to be passed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – clustering method used, internally
scipy.cluster.hierarchy.linkage() is used.

	orientation (str [https://docs.python.org/3/library/stdtypes.html#str]) – direction for the plot. top, bottom, left and
right are accepted; top will draw the leaves at the bottom.

	use_dist (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function dist_func will be applied to
data to get a distance matrix

	dist_func (func) – distance function to be used

	Returns

	The dendrogram plotted, as returned by
scipy.cluster.hierarchy.dendrogram()

	
mgkit.plots.heatmap.heatmap_clustered(data, figsize=(10, 5), cmap=None, norm=None)

	Plots a heatmap clustered on both rows and columns.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – passed to mgkit.plots.utils.get_grid_figure()

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

 mgkit.plots.utils module

mgkit.plots.utils module

New in version 0.1.14.

Misc code

	
mgkit.plots.utils.get_grid_figure(rows, cols, dpi=300, figsize=(10, 20), **kwd)

	
New in version 0.1.13.

Simple wrapper to init a GridSpec figure

	Parameters

	
	rows (int [https://docs.python.org/3/library/functions.html#int]) – number of rows

	columns (int [https://docs.python.org/3/library/functions.html#int]) – number of columns

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.get_single_figure(dpi=300, figsize=(10, 20), aspect='auto')

	
Changed in version 0.1.14: added aspect parameter

Simple wrapper to init a single figure

	Parameters

	
	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	aspect (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]) – aspect ratio to be passed to figure.add_subplot

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.legend_patches(labels, colors)

	
New in version 0.3.1.

Makes handles (using matplotlib Patch) that can be passed to the legend
method of a matplotlib axes instance

	Parameters

	
	labels (iterable) – iterable that yields a label

	colors (iterable) – iterable that yields a valid matplotlib color

	Returns

	list of patches that can be passed to the handles parameter in
the ax.legend method

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 mgkit.simple_cache module

mgkit.simple_cache module

	
class mgkit.simple_cache.memoize(func)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

a cache found on the PythonDecoratorLibrary [https://wiki.python.org/moin/PythonDecoratorLibrary#Alternate_memoize_as_dict_subclass]

Not sure about the license for it.

 mgkit.snps package

mgkit.snps package

Submodules

	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

Module contents

SNPs data package

 mgkit.snps.classes module

mgkit.snps.classes module

Manage SNP data.

	
class mgkit.snps.classes.GeneSNP(gene_id='', taxon_id=0, exp_syn=0, exp_nonsyn=0, coverage=None, snps=None, uid=None, json_data=None)

	Bases: mgkit.snps.classes.RatioMixIn

New in version 0.1.13.

Class defining gene and synonymous/non-synonymous SNPs.

It defines background synonymous/non-synonymous attributes and only has a
method right now, which calculate pN/pS ratio. The method is added through
a mixin object, so the ratio can be customised and be shared with the old
implementation.

	
uid

	unique id for the isoform (to be referenced in a GFF file)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_id

	gene id

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
taxon_id

	gene taxon

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_syn

	expected synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_nonsyn

	expected non-synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
coverage

	gene coverage

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
snps

	list of SNPs associated with the gene, each element is a
tuple with the position (relative to the gene start), the second is
the nucleotidic change and the third is the aa SNP type as defined
by SNPType.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

The main difference with the GeneSyn is that all snps are kept
and syn and nonsyn are not attributes but properties that return
the count of synonymous and non-synonymous SNPs in the snps list.

Warning

This class uses more memory than GeneSyn because it doesn’t
use __slots__, it may be changed in later versions.

	
add(other)

	Inplace addition of another instance values. No check for them being
the same gene/taxon, it’s up to the user to check that they can be
added together.

	Parameters

	other – instance of GeneSyn to add

	
add_snp(position, change, snp_type=<SNPType.unknown: 0>)

	Adds a SNP to the list

	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – SNP position, relative to the gene start

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	snp_type (enum) – one of the values defined in SNPType

	
coverage = None

	

	
exp_nonsyn = None

	

	
exp_syn = None

	

	
from_json(data)

	Instantiate the instance with values from a json definition

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – json representation, as returned by
GeneSNP.to_json()

	
gene_id = None

	

	
nonsyn

	Returns the expected non-synonymous changes

	
snps = None

	

	
syn

	Returns the expected synonymous changes

	
taxon_id = None

	

	
to_json()

	Returns a json definition of the instance

	Returns

	json representation of the instance

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
uid = None

	

	
class mgkit.snps.classes.RatioMixIn

	Bases: future.types.newobject.newobject

	
calc_ratio(haplotypes=False)

	
Changed in version 0.2.2: split the function to handle flag_value in another method

Calculate \(\frac {pN}{pS}\) for the gene.

(1)\[\frac {pN}{pS} = \frac{ ^{oN}/_{eN}}{ ^{oS}/_{eS}}\]

WHere:

	oN (number of non-synonymous - nonsyn)

	eN (expected number of non-synonymous - exp_nonsyn)

	oS (number of synonymous - syn)

	eS (expected number of synonymous - exp_syn)

	Parameters

	
	flag_value (bool [https://docs.python.org/3/library/functions.html#bool]) – when there’s no way to calculate the ratio, the
possible cases will be flagged with a negative number. This
allows to make substitutions for these values

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, coverage information is not used,
because the SNPs are assumed to come from an alignment that has
sequences having haplotypes

	Returns

	the \(\frac {pN}{pS}\) for the gene.

Note

Because pN or pS can be 0, and the return value would be NaN,
we take in account some special cases. The default return value
in this cases is numpy.nan.

	Both synonymous and non-synonymous values are 0:

	if both the syn and nonsyn attributes are 0 but there’s
coverage for this gene, we return a 0, as there’s no
evolution in this gene. Before, the coverage was checked by
this method against either the passed min_cov parameter
that was equal to MIN_COV. Now the case is for the
user to check the coverage and functions in
mgkit.snps.conv_func do that. If enough coverage was
achieved, the haplotypes parameter can be used to return a
0

All other cases return a NaN value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calc_ratio_flag()

	
New in version 0.2.2.

Handles cases where it’s important to flag the returned value, as
explained in GeneSNP.calc_ratio(), and when the both the number
of synonymous and non-synonymous is greater than 0, the pN/pS value is
returned.

	
	The number of non-synonymous is greater than 0 but the number of

	
synonymous is 0:

	if flag_value is True, the returned value is -1

	The number of synonymous is greater than 0 but the number of
non-synonymous is 0:

	if flag_value is True, the returned value is -2

	\(oS\)

	\(oN\)

	return value

	>0

	>0

	pN/pS

	0

	0

	-3

	>0

	0

	-1

	0

	>0

	-2

	
class mgkit.snps.classes.SNPType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

New in version 0.1.13.

Enum that defines SNP types. Supported at the moment:

	unknown = 0

	syn (synonymous) = 1

	nonsyn (non-synonymous) = 2

Note

No support is planned at the moment to support indel mutations

	
nonsyn = 2

	

	
syn = 1

	

	
unknown = 0

	

 mgkit.snps.conv_func module

mgkit.snps.conv_func module

Wappers to use some of the general function of the snps package
in a simpler way.

	
mgkit.snps.conv_func.get_full_dataframe(snp_data, taxonomy, min_num=3, index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is None (gene-taxon)

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_map_dataframe(snp_data, taxonomy, gene_map, min_num=3, index_type='gene', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_taxon_dataframe(snp_data, taxonomy, gene_map, min_num=3, rank='genus', index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Todo

edit docstring

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_rank_dataframe(snp_data, taxonomy, min_num=3, rank='order', index_type='taxon', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the specified rank. Higher taxa won’t
be included.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
taxon_func parameter map_taxon_id_to_rank(),
with include_higher equals to False

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to map. Valid ranks are found in
mgkit.taxon.TAXON_RANKS

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘taxon’

	Return type

	DataFrame

 mgkit.snps.filter module

mgkit.snps.filter module

SNPs filtering functions

	
mgkit.snps.filter.filter_genesyn_by_coverage(gene_syn, min_cov=None)

	Checks if the coverage of the provided gene_syn is at least min_cov

	Parameters

	
	gene_syn – GeneSyn instance

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage allowed (included)

	Returns

	True if the gene has enough coverage

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if min_cov is None

	
mgkit.snps.filter.filter_genesyn_by_gene_id(gene_syn, gene_ids=None, exclude=False, id_func=None)

	Checks if the gene_id is listed in the filter_list.

	Parameters

	
	gene_syn – GeneSyn instance

	gene_ids (iterable) – list of gene IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if gene_ids is None

	
mgkit.snps.filter.filter_genesyn_by_taxon_id(gene_syn, taxonomy=None, filter_list=None, exclude=False, func=None)

	Checks if the taxon_id attribute of gene_syn is the filter_list.
Excelude reverses the result. If func is supplied, it’s used to traverse
the taxonomy.

	Parameters

	
	gene_syn – GeneSyn instance

	taxonomy – a valid taxonomy (instance of
Taxonomy)

	filter_list (iterable) – list of taxon IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	func (func) – is_ancestor()

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if filter_list is None or taxonomy is None and func is not
None

	
mgkit.snps.filter.get_default_filters(taxonomy, **kwargs)

	Retuns a list of filters that are used by default. it needs a valid
taxonomy and gets the default arguments from
mgkit.consts.DEFAULT_SNP_FILTER.

	
mgkit.snps.filter.pipe_filters(iterable, *funcs)

	Pipes a list of filter to iterable, using the python ifilter function in
the itertools module. Now using builtins.filter

 mgkit.snps.funcs module

mgkit.snps.funcs module

Functions used in SNPs manipulation

	
mgkit.snps.funcs.build_rank_matrix(dataframe, taxonomy=None, taxon_rank=None)

	Make a rank matrix from a pandas.Series with the pN/pS values of a
dataset.

	Parameters

	
	dataframe – pandas.Series instance with a MultiIndex
(gene-taxon)

	taxonomy – taxon.Taxonomy instance with the full
taxonomy

	taxon_rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to limit the specifity of the taxa
included

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.combine_sample_snps(snps_data, min_num, filters, index_type=None, gene_func=None, taxon_func=None, use_uid=False, flag_values=False, haplotypes=True, store_uids=False)

	
Changed in version 0.2.2: added use_uid argument

Changed in version 0.3.1: added haplotypes

Changed in version 0.4.0: added store_uids

Combine a dictionary sample->gene_index->GeneSyn into a
pandas.DataFrame. The dictionary is first filtered with the
functions in filters, mapped to different taxa and genes using
taxon_func and gene_func respectively. The returned DataFrame is also
filtered for each row having at least a min_num of not NaN values.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the GeneSNP instances

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – the minimum number of not NaN values necessary in a row
to be returned

	filters (iterable) – iterable containing filter functions, a list can be
found in mgkit.snps.filter

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – if None, each row index for the DataFrame
will be a MultiIndex with gene and taxon as elements. If the
equals ‘gene’, the row index will be gene based and if ‘taxon’ will
be taxon based

	gene_func (func) – a function to map a gene_id to a gene_map. See
mapper.map_gene_id() for an example

	taxon_func (func) – a function to map a taxon_id to a list of IDs. See
mapper.map_taxon_id_to_rank or
mapper.map_taxon_id_to_ancestor for examples

	use_uid (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses the GeneSNP.uid instead of
GeneSNP.gene_id

	flag_values (bool [https://docs.python.org/3/library/functions.html#bool]) – if True,
mgkit.snps.classes.GeneSNP.calc_ratio_flag() will be used,
instead of mgkit.snps.classes.GeneSNP.calc_ratio()

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if flag_values is False, and haplotypes is
True, the 0/0 case will be returned as 0 instead of NaN

	store_uids (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a dictionary with the uid used for each
cell (e.g. gene/taxon/sample)

	Returns

	pandas.DataFrame with the pN/pS values for the
input SNPs, with the columns being the samples. if store_uids is True
the return value is a tuple (DataFrame, dict)

	Return type

	DataFrame

	
mgkit.snps.funcs.flat_sample_snps(snps_data, min_cov)

	
New in version 0.1.11.

Adds all the values of a gene across all samples into one instance of
classes.GeneSNP, giving the average gene among all samples.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the instances of
classes.GeneSNP

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage required for the each instance to be
added

	Returns

	the dictionary with only one key (all_samples), which can be
used with combine_sample_snps()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.snps.funcs.group_rank_matrix(dataframe, gene_map)

	Group a rank matrix using a mapping, in the form map_id->ko_ids.

	Parameters

	
	dataframe – instance of a rank matrix from build_rank_matrix()

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the mapping

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.order_ratios(ratios, aggr_func=<function median>, reverse=False, key_filter=None)

	Given a dictionary of id->iterable where iterable contains the values of
interest, the function uses aggr_func to sort (ascending by default) it and
return a list with the key in the sorted order.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary instance id->iterable

	aggr_func (function) – any function returning a value that can be used
as a key in sorting

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – the default is ascending sorting (False), set to True
to reverse key_filter: list of keys to use for ordering, if None, every
key is used

	Returns

	iterable with the sort order

	
mgkit.snps.funcs.significance_test(dataframe, taxon_id1, taxon_id2, test_func=<function ks_2samp>)

	
New in version 0.1.11.

Perform a statistical test on each gene distribution in two different taxa.

For each gene common to the two taxa, the distribution of values in all
samples (columns) between the two specified taxa is tested.

	Parameters

	
	dataframe – pandas.DataFrame instance

	taxon_id1 – the first taxon ID

	taxon_id2 – the second taxon ID

	test_func – function used to test,
defaults to scipy.stats.ks_2samp()

	Returns

	with all pvalues from the tests

	Return type

	pandas.Series

	
mgkit.snps.funcs.write_sign_genes_table(out_file, dataframe, sign_genes, taxonomy, gene_names=None)

	Write a table with the list of significant genes found in a dataframe, the
significant gene list is the result of
wilcoxon_pairwise_test_dataframe().

	Out_file

	the file name or file object to write the file

	Dataframe

	the dataframe which was tested for significant genes

	Sign_genes

	gene list that are significant

	Taxonomy

	taxonomy object

	Gene_names

	dictionary with the name of the the genes. Optional

 mgkit.snps.mapper module

mgkit.snps.mapper module

Mapping functions for SNPs - Should be move into an ‘iterator’ package to
be shared with other modules?

	
mgkit.snps.mapper.map_gene_id(gene_id, gene_map=None)

	Returns an iterator for all the values of a dictionary. if gene_id is not
found in the gene_map, an empty iterator is returned.

	Parameters

	
	gene_id (immutable) – gene_id or any other dictionary key.

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form key->[v1, v2, .. vN]

	Returns

	iterator (empty if gene_id is not in gene_map) with the
values

	Return type

	generator

	
mgkit.snps.mapper.map_taxon_id_to_ancestor(taxon_id, anc_ids=None, func=None)

	Given a taxon_id and a list of ancestors IDs, returns an iterator with the
IDs that are ancestors of taxon_id.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	anc_ids (iterable) – taxon IDs to check for ancestry

	func – function used to check for ancestry - partial function for
mgkit.taxon.is_ancestor() that accepts taxon_id and anc_id

	Returns

	iterator with the values or empty

	Return type

	generator

Note

check mgkit.filter.taxon.filter_taxon_by_id_list() for examples
on using func

	
mgkit.snps.mapper.map_taxon_id_to_rank(taxon_id, rank=None, taxonomy=None, include_higher=False)

	Given a taxon_id, returns an iterator with only the element that correspond
to the requested rank. If the taxon returned by
mgkit.taxon.Taxonomy.get_ranked_taxon has a different rank
than requested, the iterator will be empty if include_higher is False
and the returned taxon ID if True.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank used (mgkit.taxon.TAXON_RANKS)

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if a rank higher than the one
requested is to be returned

	Returns

	iterator with the values or empty

	Return type

	generator

 mgkit.snps.classes module

mgkit.snps.classes module

Manage SNP data.

	
class mgkit.snps.classes.GeneSNP(gene_id='', taxon_id=0, exp_syn=0, exp_nonsyn=0, coverage=None, snps=None, uid=None, json_data=None)

	Bases: mgkit.snps.classes.RatioMixIn

New in version 0.1.13.

Class defining gene and synonymous/non-synonymous SNPs.

It defines background synonymous/non-synonymous attributes and only has a
method right now, which calculate pN/pS ratio. The method is added through
a mixin object, so the ratio can be customised and be shared with the old
implementation.

	
uid

	unique id for the isoform (to be referenced in a GFF file)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_id

	gene id

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
taxon_id

	gene taxon

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_syn

	expected synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_nonsyn

	expected non-synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
coverage

	gene coverage

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
snps

	list of SNPs associated with the gene, each element is a
tuple with the position (relative to the gene start), the second is
the nucleotidic change and the third is the aa SNP type as defined
by SNPType.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

The main difference with the GeneSyn is that all snps are kept
and syn and nonsyn are not attributes but properties that return
the count of synonymous and non-synonymous SNPs in the snps list.

Warning

This class uses more memory than GeneSyn because it doesn’t
use __slots__, it may be changed in later versions.

	
add(other)

	Inplace addition of another instance values. No check for them being
the same gene/taxon, it’s up to the user to check that they can be
added together.

	Parameters

	other – instance of GeneSyn to add

	
add_snp(position, change, snp_type=<SNPType.unknown: 0>)

	Adds a SNP to the list

	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – SNP position, relative to the gene start

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	snp_type (enum) – one of the values defined in SNPType

	
coverage = None

	

	
exp_nonsyn = None

	

	
exp_syn = None

	

	
from_json(data)

	Instantiate the instance with values from a json definition

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – json representation, as returned by
GeneSNP.to_json()

	
gene_id = None

	

	
nonsyn

	Returns the expected non-synonymous changes

	
snps = None

	

	
syn

	Returns the expected synonymous changes

	
taxon_id = None

	

	
to_json()

	Returns a json definition of the instance

	Returns

	json representation of the instance

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
uid = None

	

	
class mgkit.snps.classes.RatioMixIn

	Bases: future.types.newobject.newobject

	
calc_ratio(haplotypes=False)

	
Changed in version 0.2.2: split the function to handle flag_value in another method

Calculate \(\frac {pN}{pS}\) for the gene.

(1)\[\frac {pN}{pS} = \frac{ ^{oN}/_{eN}}{ ^{oS}/_{eS}}\]

WHere:

	oN (number of non-synonymous - nonsyn)

	eN (expected number of non-synonymous - exp_nonsyn)

	oS (number of synonymous - syn)

	eS (expected number of synonymous - exp_syn)

	Parameters

	
	flag_value (bool [https://docs.python.org/3/library/functions.html#bool]) – when there’s no way to calculate the ratio, the
possible cases will be flagged with a negative number. This
allows to make substitutions for these values

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, coverage information is not used,
because the SNPs are assumed to come from an alignment that has
sequences having haplotypes

	Returns

	the \(\frac {pN}{pS}\) for the gene.

Note

Because pN or pS can be 0, and the return value would be NaN,
we take in account some special cases. The default return value
in this cases is numpy.nan.

	Both synonymous and non-synonymous values are 0:

	if both the syn and nonsyn attributes are 0 but there’s
coverage for this gene, we return a 0, as there’s no
evolution in this gene. Before, the coverage was checked by
this method against either the passed min_cov parameter
that was equal to MIN_COV. Now the case is for the
user to check the coverage and functions in
mgkit.snps.conv_func do that. If enough coverage was
achieved, the haplotypes parameter can be used to return a
0

All other cases return a NaN value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calc_ratio_flag()

	
New in version 0.2.2.

Handles cases where it’s important to flag the returned value, as
explained in GeneSNP.calc_ratio(), and when the both the number
of synonymous and non-synonymous is greater than 0, the pN/pS value is
returned.

	
	The number of non-synonymous is greater than 0 but the number of

	
synonymous is 0:

	if flag_value is True, the returned value is -1

	The number of synonymous is greater than 0 but the number of
non-synonymous is 0:

	if flag_value is True, the returned value is -2

	\(oS\)

	\(oN\)

	return value

	>0

	>0

	pN/pS

	0

	0

	-3

	>0

	0

	-1

	0

	>0

	-2

	
class mgkit.snps.classes.SNPType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

New in version 0.1.13.

Enum that defines SNP types. Supported at the moment:

	unknown = 0

	syn (synonymous) = 1

	nonsyn (non-synonymous) = 2

Note

No support is planned at the moment to support indel mutations

	
nonsyn = 2

	

	
syn = 1

	

	
unknown = 0

	

 mgkit.snps.conv_func module

mgkit.snps.conv_func module

Wappers to use some of the general function of the snps package
in a simpler way.

	
mgkit.snps.conv_func.get_full_dataframe(snp_data, taxonomy, min_num=3, index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is None (gene-taxon)

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_map_dataframe(snp_data, taxonomy, gene_map, min_num=3, index_type='gene', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_taxon_dataframe(snp_data, taxonomy, gene_map, min_num=3, rank='genus', index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Todo

edit docstring

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_rank_dataframe(snp_data, taxonomy, min_num=3, rank='order', index_type='taxon', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the specified rank. Higher taxa won’t
be included.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
taxon_func parameter map_taxon_id_to_rank(),
with include_higher equals to False

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to map. Valid ranks are found in
mgkit.taxon.TAXON_RANKS

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘taxon’

	Return type

	DataFrame

 mgkit.snps.filter module

mgkit.snps.filter module

SNPs filtering functions

	
mgkit.snps.filter.filter_genesyn_by_coverage(gene_syn, min_cov=None)

	Checks if the coverage of the provided gene_syn is at least min_cov

	Parameters

	
	gene_syn – GeneSyn instance

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage allowed (included)

	Returns

	True if the gene has enough coverage

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if min_cov is None

	
mgkit.snps.filter.filter_genesyn_by_gene_id(gene_syn, gene_ids=None, exclude=False, id_func=None)

	Checks if the gene_id is listed in the filter_list.

	Parameters

	
	gene_syn – GeneSyn instance

	gene_ids (iterable) – list of gene IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if gene_ids is None

	
mgkit.snps.filter.filter_genesyn_by_taxon_id(gene_syn, taxonomy=None, filter_list=None, exclude=False, func=None)

	Checks if the taxon_id attribute of gene_syn is the filter_list.
Excelude reverses the result. If func is supplied, it’s used to traverse
the taxonomy.

	Parameters

	
	gene_syn – GeneSyn instance

	taxonomy – a valid taxonomy (instance of
Taxonomy)

	filter_list (iterable) – list of taxon IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	func (func) – is_ancestor()

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if filter_list is None or taxonomy is None and func is not
None

	
mgkit.snps.filter.get_default_filters(taxonomy, **kwargs)

	Retuns a list of filters that are used by default. it needs a valid
taxonomy and gets the default arguments from
mgkit.consts.DEFAULT_SNP_FILTER.

	
mgkit.snps.filter.pipe_filters(iterable, *funcs)

	Pipes a list of filter to iterable, using the python ifilter function in
the itertools module. Now using builtins.filter

 mgkit.snps.funcs module

mgkit.snps.funcs module

Functions used in SNPs manipulation

	
mgkit.snps.funcs.build_rank_matrix(dataframe, taxonomy=None, taxon_rank=None)

	Make a rank matrix from a pandas.Series with the pN/pS values of a
dataset.

	Parameters

	
	dataframe – pandas.Series instance with a MultiIndex
(gene-taxon)

	taxonomy – taxon.Taxonomy instance with the full
taxonomy

	taxon_rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to limit the specifity of the taxa
included

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.combine_sample_snps(snps_data, min_num, filters, index_type=None, gene_func=None, taxon_func=None, use_uid=False, flag_values=False, haplotypes=True, store_uids=False)

	
Changed in version 0.2.2: added use_uid argument

Changed in version 0.3.1: added haplotypes

Changed in version 0.4.0: added store_uids

Combine a dictionary sample->gene_index->GeneSyn into a
pandas.DataFrame. The dictionary is first filtered with the
functions in filters, mapped to different taxa and genes using
taxon_func and gene_func respectively. The returned DataFrame is also
filtered for each row having at least a min_num of not NaN values.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the GeneSNP instances

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – the minimum number of not NaN values necessary in a row
to be returned

	filters (iterable) – iterable containing filter functions, a list can be
found in mgkit.snps.filter

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – if None, each row index for the DataFrame
will be a MultiIndex with gene and taxon as elements. If the
equals ‘gene’, the row index will be gene based and if ‘taxon’ will
be taxon based

	gene_func (func) – a function to map a gene_id to a gene_map. See
mapper.map_gene_id() for an example

	taxon_func (func) – a function to map a taxon_id to a list of IDs. See
mapper.map_taxon_id_to_rank or
mapper.map_taxon_id_to_ancestor for examples

	use_uid (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses the GeneSNP.uid instead of
GeneSNP.gene_id

	flag_values (bool [https://docs.python.org/3/library/functions.html#bool]) – if True,
mgkit.snps.classes.GeneSNP.calc_ratio_flag() will be used,
instead of mgkit.snps.classes.GeneSNP.calc_ratio()

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if flag_values is False, and haplotypes is
True, the 0/0 case will be returned as 0 instead of NaN

	store_uids (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a dictionary with the uid used for each
cell (e.g. gene/taxon/sample)

	Returns

	pandas.DataFrame with the pN/pS values for the
input SNPs, with the columns being the samples. if store_uids is True
the return value is a tuple (DataFrame, dict)

	Return type

	DataFrame

	
mgkit.snps.funcs.flat_sample_snps(snps_data, min_cov)

	
New in version 0.1.11.

Adds all the values of a gene across all samples into one instance of
classes.GeneSNP, giving the average gene among all samples.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the instances of
classes.GeneSNP

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage required for the each instance to be
added

	Returns

	the dictionary with only one key (all_samples), which can be
used with combine_sample_snps()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.snps.funcs.group_rank_matrix(dataframe, gene_map)

	Group a rank matrix using a mapping, in the form map_id->ko_ids.

	Parameters

	
	dataframe – instance of a rank matrix from build_rank_matrix()

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the mapping

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.order_ratios(ratios, aggr_func=<function median>, reverse=False, key_filter=None)

	Given a dictionary of id->iterable where iterable contains the values of
interest, the function uses aggr_func to sort (ascending by default) it and
return a list with the key in the sorted order.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary instance id->iterable

	aggr_func (function) – any function returning a value that can be used
as a key in sorting

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – the default is ascending sorting (False), set to True
to reverse key_filter: list of keys to use for ordering, if None, every
key is used

	Returns

	iterable with the sort order

	
mgkit.snps.funcs.significance_test(dataframe, taxon_id1, taxon_id2, test_func=<function ks_2samp>)

	
New in version 0.1.11.

Perform a statistical test on each gene distribution in two different taxa.

For each gene common to the two taxa, the distribution of values in all
samples (columns) between the two specified taxa is tested.

	Parameters

	
	dataframe – pandas.DataFrame instance

	taxon_id1 – the first taxon ID

	taxon_id2 – the second taxon ID

	test_func – function used to test,
defaults to scipy.stats.ks_2samp()

	Returns

	with all pvalues from the tests

	Return type

	pandas.Series

	
mgkit.snps.funcs.write_sign_genes_table(out_file, dataframe, sign_genes, taxonomy, gene_names=None)

	Write a table with the list of significant genes found in a dataframe, the
significant gene list is the result of
wilcoxon_pairwise_test_dataframe().

	Out_file

	the file name or file object to write the file

	Dataframe

	the dataframe which was tested for significant genes

	Sign_genes

	gene list that are significant

	Taxonomy

	taxonomy object

	Gene_names

	dictionary with the name of the the genes. Optional

 mgkit.snps.mapper module

mgkit.snps.mapper module

Mapping functions for SNPs - Should be move into an ‘iterator’ package to
be shared with other modules?

	
mgkit.snps.mapper.map_gene_id(gene_id, gene_map=None)

	Returns an iterator for all the values of a dictionary. if gene_id is not
found in the gene_map, an empty iterator is returned.

	Parameters

	
	gene_id (immutable) – gene_id or any other dictionary key.

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form key->[v1, v2, .. vN]

	Returns

	iterator (empty if gene_id is not in gene_map) with the
values

	Return type

	generator

	
mgkit.snps.mapper.map_taxon_id_to_ancestor(taxon_id, anc_ids=None, func=None)

	Given a taxon_id and a list of ancestors IDs, returns an iterator with the
IDs that are ancestors of taxon_id.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	anc_ids (iterable) – taxon IDs to check for ancestry

	func – function used to check for ancestry - partial function for
mgkit.taxon.is_ancestor() that accepts taxon_id and anc_id

	Returns

	iterator with the values or empty

	Return type

	generator

Note

check mgkit.filter.taxon.filter_taxon_by_id_list() for examples
on using func

	
mgkit.snps.mapper.map_taxon_id_to_rank(taxon_id, rank=None, taxonomy=None, include_higher=False)

	Given a taxon_id, returns an iterator with only the element that correspond
to the requested rank. If the taxon returned by
mgkit.taxon.Taxonomy.get_ranked_taxon has a different rank
than requested, the iterator will be empty if include_higher is False
and the returned taxon ID if True.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank used (mgkit.taxon.TAXON_RANKS)

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if a rank higher than the one
requested is to be returned

	Returns

	iterator with the values or empty

	Return type

	generator

 mgkit.taxon module

mgkit.taxon module

This module gives access to Uniprot taxonomy data. It also defines classes
to filter, order and group data by taxa

	
exception mgkit.taxon.NoLcaFound

	Bases: exceptions.Exception

New in version 0.1.13.

Raised if no lowest common ancestor can be found in the taxonomy

	
mgkit.taxon.TaxonTuple

	alias of mgkit.taxon.UniprotTaxonTuple

	
class mgkit.taxon.Taxonomy(fname=None)

	Bases: future.types.newobject.newobject

Class that contains the whole Uniprot taxonomy. Defines some methods to
easy access of taxonomy. Follows the conventions of NCBI Taxonomy.

Defines:

	methods to load taxonomy from a pickle file or a generic file handle

	can be iterated over and returns a generator its UniprotTaxon instances

	can be used as a dictionary, in which the key is a taxon_id and the value
is its UniprotTaxon instance

	
__contains__(taxon)

	Returns True if the taxon is in the taxonomy

Accepts an int (check for taxon_id) or an instance of UniprotTaxon

	
__getitem__(taxon_id)

	Defines dictionary behavior. Key is a taxon_id, the returned value is a
UniprotTaxon instance

	
__iter__()

	Defines iterable behavior. Returns a generator for UniprotTaxon instances

	
__len__()

	Returns the number of taxa contained

	
__repr__()

	
New in version 0.2.5.

	
add_lineage(**lineage)

	
New in version 0.3.1.

Adds a lineage to the taxonomy. It’s passed by keyword arguments, where
each key is a value in the TAXON_RANKS rankes and the value is the
scientific name. Appended underscores ‘_’ will be stripped from the
rank name. This is for cases such as class where the key is a reserved
word in Python. Also one extra node can be added, such as
strain/cultivar/subspecies and so on, but one only is expected to be
passed.

	Parameters

	lineage (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the lineage as a keyword arguments

	Returns

	the taxon_id of the last element in the lineage

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if more than a keyword argument is not contained in

	TAXON_RANKS

	
add_taxon(taxon_name, common_name='', rank='no rank', parent_id=None)

	
New in version 0.3.1.

Adds a taxon to the taxonomy. If a taxon with the same name and rank is
found, its taxon_id is returned, otherwise a new taxon_id is returned.

	Parameters

	
	taxon_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – scientific name of the taxon

	common_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – common name

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank, defaults to ‘no rank’

	parent_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id of the parent, defaults to None, which
is the taxonomy root

	Returns

	the taxon_id of the added taxon (if new), or the taxon_id of
the taxon with the same name and rank found in the taxonomy

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if more than one taxon has already the passed name and

	rank and it can’t be resolved by looking at the parent_id passed,

	the exception is raised.

	
drop_taxon(taxon_id)

	
New in version 0.3.1.

Drops a taxon and all taxa below it in the taxonomy. Also reset the
name map for conistency.

	Parameters

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to drop from the taxonomy

	
find_by_name(s_name, rank=None, strict=True)

	
Changed in version 0.2.3: the search is now case insensitive

Changed in version 0.3.1: added rank and strict parameter

Returns the taxon IDs associated with the scientific name provided

	Parameters

	
	s_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the scientific name

	rank (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – return only a taxon_id of a specific rank

	strict (book) – if True and rank is not None, KeyError will be
raised if multiple taxa have the same name and rank

	Returns

	a reference to the list of IDs that have for s_name, if
rank is None. If rank is not None and one taxon is found, its
taxon_id is returned, or None if no taxon is found. If strict is
True and rank is not None, the set of taxon_ids found is
resturned.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If multiple taxa are found, a KeyError exception is

	raised.

	
gen_name_map()

	
Changed in version 0.2.3: names are stored in the mapping as lowercase

Generate a name map, where to each scientific name in the taxonomy an
id is associated.

	
get_lineage(taxon_id, names=False, only_ranked=True, with_last=True)

	
New in version 0.3.1.

Proxy for get_lineage(), with changed defaults

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to return the lineage

	names (bool [https://docs.python.org/3/library/functions.html#bool]) – if the elements of the list are converted into the
scientific names

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – only return the ranked taxa

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – include the taxon_id passed to the list

	Returns

	the lineage of the passed taxon_id as a list of IDs or names

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_lineage_string(taxon_id, only_ranked=True, with_last=True, sep=';', rank=None)

	
New in version 0.3.3.

Generates a lineage string, with the possibility of getting another
ranked taxon (via Taxonomy.get_ranked_taxon()) to another
rank, such as phylum.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to return the lineage

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – only return the ranked taxa

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – include the taxon_id passed to the list

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator used to join the lineage string

	rank (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – if None the full lineage is returned, otherwise
the lineage will be cut to the specified rank

	Returns

	lineage string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_name_map()

	Returns a taxon_id->s_name dictionary

	
get_ranked_id(taxon_id, rank=None, it=False, include_higher=True)

	
New in version 0.3.4.

Gets the ranked taxon of another one. Useful when it’s better to get a
taxon_id instead of an instance of TaxonTuple. Internally, it
relies on Taxonomy.get_ranked_taxon().

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id

	rank (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – passed over

	it (bool [https://docs.python.org/3/library/functions.html#bool]) – determines the return value. if True, a list is returned

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, any rank higher than the requested
may be returned. If False and the rank cannot be returned, None
is returned

	Returns

	The type returned is based on the it paramenter. If
it is True, the return value is a list with the taxon_id of the
ranked taxon as the sole value. If False, the returned value is the
taxon_id. include_higher determines if the return value should
be None if the exact rank was not found and include_higher is
False

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_ranked_taxon(taxon_id, rank=None, ranks=('superkingdom', 'kingdom', 'phylum', 'class', 'subclass', 'order', 'family', 'genus', 'species'), roots=False)

	
Changed in version 0.1.13: added roots argument

Traverse the branch of which the taxon argument is the leaf backward,
to get the specific rank to which the taxon belongs to.

Warning

the roots options is kept for backward compatibility and should be
be set to False

	Parameters

	
	taxon_id – id of the taxon or instance of UniprotTaxon

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that specify the rank, if None, the first valid
rank will be searched. (i.e. the first with a value different from ‘’)

	ranks – tuple of all taxonomy ranks, default to the default module
value

	roots (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses TAXON_ROOTS to solve the root
taxa

	Returns

	instance of TaxonTuple for the rank found.

	
is_ancestor(leaf_id, anc_ids)

	
Changed in version 0.1.13: now uses is_ancestor() and changed behavior

Checks if a taxon is the leaf of another one, or a list of taxa.

	Parameters

	
	leaf_id (int [https://docs.python.org/3/library/functions.html#int]) – leaf taxon id

	anc_ids (int [https://docs.python.org/3/library/functions.html#int]) – ancestor taxon id(s)

	Return bool

	True if the ancestor taxon is in the leaf taxon lineage

	
is_ranked_below(taxon_id, rank, equal=True)

	
New in version 0.4.0.

Tests if a taxon_id is below the requested rank.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxo_id to test

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank requested

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if the taxon_id tested may be of the
requested rank

	Returns

	If the passed taxon_id is below the requested rank, it
returns True. If taxon_id is of the rank requested and equal
is True, the return value is True, if equal is False the return
value is False. The return value is False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load_data(file_handle)

	
Changed in version 0.2.3: now can use read msgpack serialised files

Changed in version 0.1.13: now accepts file handles and compressed files (if file names)

Loads serialised data from file name “file_handle” and accepts
compressed files.

if the .msgpack string is found in the file name, the msgpack
package is used instead of pickle

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name to which save the instance data

	
static parse_gtdb_lineage(lineage, sep=';')

	
New in version 0.3.3.

Parse a GTDB lineage, one that defines the rank as a single letter,
followed by __ for each taxon name. Taxa are separated by semicolon
by default. Also the domain rank is renamed into superkingdom
to allow mixing of taxonomies.

	Returns

	dictionary with the parsed lineage, which can be passed to
Taxonomy.add_lineage()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
read_from_gtdb_taxonomy(file_handle, use_gtdb_name=True, sep='\t')

	
New in version 0.3.0.

Changed in version 0.3.1: replaced domain with superkingdom to support get_lineage

Reads a GTDB taxonomy file (tab separated genome_id/taxonomy) and
populate the taxonomy instance. The method also return a dictionary of
genome_id -> taxon_id.

	Parameters

	
	file_handle (file) – file with the taxonomy

	use_gtdb_name (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the names are kept as-is in the
s_name attribute of TaxonTuple and the
“cleaned” version in c_name (e.g. f__Ammonifexaceae ->
Ammonifexaceae). If False, the values are switched

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator between the columns of the file

	Returns

	dictionary of genome_id -> taxon_id, reflecting the created
taxonomy

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Note

the taxon_id are generated, so there’s no guarantee they will be
the same in a successive execution

	
read_from_ncbi_dump(nodes_file, names_file=None, merged_file=None)

	
New in version 0.2.3.

Uses the nodes.dmp and optionally names.dmp, merged.dmp files
from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/ to populate the
taxonomy.

	Parameters

	
	nodes_file (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	names_file (str [https://docs.python.org/3/library/stdtypes.html#str], file, None [https://docs.python.org/3/library/constants.html#None]) – file name or handle to the file,
if None, names won’t be added to the taxa

	merged_file (str [https://docs.python.org/3/library/stdtypes.html#str], file, None [https://docs.python.org/3/library/constants.html#None]) – file name or handle to the file,
if None, pointers to merged taxa won’t be added

	
read_taxonomy(f_handle, light=True)

	
Changed in version 0.2.1: added light parameter

Deprecated since version 0.4.0: use Taxonomy.read_from_ncbi_dump()

Reads taxonomy from a file handle.
The file needs to be a tab separated format return by a query on
Uniprot. If light is True, lineage is not stored to decrease the
memory usage. This is now the default.

New taxa will be added, duplicated taxa will be skipped.

	Parameters

	f_handle (handle) – file handle of the taxonomy file.

	
save_data(file_handle)

	
Changed in version 0.2.3: now can use msgpack to serialise

Saves taxonomy data to a file handle or file name, can write compressed
data if the file ends with “.gz”, “.bz2”

if the .msgpack string is found in the file name, the msgpack
package is used instead of pickle

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name to which save the instance data

	
class mgkit.taxon.UniprotTaxonTuple(taxon_id, s_name, c_name, rank, lineage, parent_id)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
_asdict()

	Return a new OrderedDict which maps field names to their values

	
_replace(**kwds)

	Return a new UniprotTaxonTuple object replacing specified fields with new values

	
c_name

	Alias for field number 2

	
lineage

	Alias for field number 4

	
parent_id

	Alias for field number 5

	
rank

	Alias for field number 3

	
s_name

	Alias for field number 1

	
taxon_id

	Alias for field number 0

	
mgkit.taxon.UniprotTaxonomy

	alias of mgkit.taxon.Taxonomy

	
mgkit.taxon.distance_taxa_ancestor(taxonomy, taxon_id, anc_id)

	
New in version 0.1.16.

Function to calculate the distance between a taxon and the given ancestor

The distance is equal to the number of step in the taxonomy taken to arrive
at the ancestor.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier

	anc_id (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of the ancestor

	Raturns:

	int: distance between taxon_id and it ancestor anc_id

	
mgkit.taxon.distance_two_taxa(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.16.

Calculate the distance between two taxa. The distance is equal to the sum
steps it takes to traverse the taxonomy until their last common ancestor.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of first taxon

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of second taxon

	Raturns:

	int: distance between taxon_id1 and taxon_id2

	
mgkit.taxon.get_ancestor_map(leaf_ids, anc_ids, taxonomy)

	This function returns a dictionary where every leaf taxon is associated
with the right ancestors in anc_ids

ex. {clostridium: [bacteria, clostridia]}

	
mgkit.taxon.get_lineage(taxonomy, taxon_id, names=False, only_ranked=False, with_last=False)

	
New in version 0.2.1.

Changed in version 0.2.5: added only_ranked

Changed in version 0.3.0: added with_last

Returns the lineage of a taxon_id, as a list of taxon_id or taxa names

	Parameters

	
	taxonomy – a Taxonomy instance

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id whose lineage to return

	names (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the returned list contains the names of the taxa
instead of the taxon_id

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, only taxonomic levels whose rank is in
data:TAXON_RANKS will be returned

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the passed taxon_id is included in the
lineage

	Returns

	lineage of the taxon_id, the elements are int if names is False,
and str when names is True. If a taxon has no scientific name, the
common name is used. If only_ranked is True, the returned list only
contains ranked taxa (according to TAXON_RANKS).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.taxon.is_ancestor(taxonomy, taxon_id, anc_id)

	
Changed in version 0.1.16: if a taxon_id raises a KeyError, False is returned

Determine if the given taxon id (taxon_id) has anc_id as ancestor.

:param Taxonomy taxonomy: taxonomy used to test
:param int taxon_id: leaf taxon to test
:param int anc_id: ancestor taxon to test against

	Return bool

	True if anc_id is an ancestor of taxon_id or their the same

	
mgkit.taxon.last_common_ancestor(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.13.

Finds the last common ancestor of two taxon IDs. An alias to this function
is in the same module, called lowest_common_ancestor for compatibility.

	Parameters

	
	taxonomy – Taxonomy instance used to test

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – first taxon ID

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – second taxon ID

	Raturns:

	int: taxon ID of the lowest common ancestor

	Raises

	NoLcaFound – if no common ancestor can be found

	
mgkit.taxon.last_common_ancestor_multiple(taxonomy, taxon_ids)

	
New in version 0.2.5.

Applies last_common_ancestor() to an iterable that yields taxon_id
while removing any None values. If the list is of one element, that
taxon_id is returned.

	Parameters

	
	taxonomy – instance of Taxonomy

	taxon_ids (iterable) – an iterable that yields taxon_id

	Returns

	the taxon_id that is the last common ancestor of all taxon_ids
passed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	NoLcaFound – when no common ancestry is found or the number of

	taxon_ids is 0

	
mgkit.taxon.lowest_common_ancestor(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.13.

Finds the last common ancestor of two taxon IDs. An alias to this function
is in the same module, called lowest_common_ancestor for compatibility.

	Parameters

	
	taxonomy – Taxonomy instance used to test

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – first taxon ID

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – second taxon ID

	Raturns:

	int: taxon ID of the lowest common ancestor

	Raises

	NoLcaFound – if no common ancestor can be found

	
mgkit.taxon.parse_ncbi_taxonomy_merged_file(file_handle)

	
New in version 0.2.3.

Parses the merged.dmp file where the merged taxon_id are stored. Available
at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	Returns

	dictionary with merged_id -> taxon_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.taxon.parse_ncbi_taxonomy_names_file(file_handle, name_classes=('scientific name', 'common name'))

	
New in version 0.2.3.

Parses the names.dmp file where the names associated to a taxon_id are
stored. Available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	name_classes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – name classes to save, only the scientific and
common name are stored

	Returns

	dictionary with merged_id -> taxon_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.taxon.parse_ncbi_taxonomy_nodes_file(file_handle, taxa_names=None)

	
New in version 0.2.3.

Parses the nodes.dmp file where the nodes of the taxonomy are stored.
Available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	taxa_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the taxa names (returned from
parse_ncbi_taxonomy_names_file())

	Yields

	TaxonTuple – TaxonTuple instance

	
mgkit.taxon.parse_uniprot_taxon(line, light=True)

	
Changed in version 0.1.13: now accepts empty scientific names, for root taxa

Changed in version 0.2.1: added light parameter

Deprecated since version 0.4.0.

Parses a Uniprot taxonomy file (tab delimited) line and returns a
UniprotTaxonTuple instance. If light is True, lineage is not stored to
decrease the memory usage. This is now the default.

	
mgkit.taxon.taxa_distance_matrix(taxonomy, taxon_ids)

	
New in version 0.1.16.

Given a list of taxonomic identifiers, returns a distance matrix in a
pairwise manner by using distance_two_taxa() on all possible
two element combinations of taxon_ids.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_ids (iterable) – list taxonomic identifiers

	Returns

	matrix with the pairwise distances of all taxon_ids

	Return type

	pandas.DataFrame

 mgkit.utils package

mgkit.utils package

Submodules

	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

Module contents

Package that contains utility functions/classes

 mgkit.utils.common module

mgkit.utils.common module

Utility functions

	
mgkit.utils.common.apply_func_window(func, data, window, step=0)

	

	
mgkit.utils.common.average_length(a1s, a1e, a2s, a2e)

	Given two sets of coordinates, a1 and a2, returns the average length.

	Parameters

	
	a1s (int [https://docs.python.org/3/library/functions.html#int]) – a1 leftmost number

	a1e (int [https://docs.python.org/3/library/functions.html#int]) – a1 rightmost number

	a2s (int [https://docs.python.org/3/library/functions.html#int]) – a2 leftmost number

	a2e (int [https://docs.python.org/3/library/functions.html#int]) – a2 rightmost number

	Return float

	the average length

	
mgkit.utils.common.between(pos, start, end)

	Tests if a number is between two others

	Parameters

	
	pos (int [https://docs.python.org/3/library/functions.html#int]) – number to test

	start (int [https://docs.python.org/3/library/functions.html#int]) – leftmost number

	end (int [https://docs.python.org/3/library/functions.html#int]) – rightmost number

	Return bool

	if the number is between start and end

	
mgkit.utils.common.complement_ranges(intervals, end=None)

	
New in version 0.3.1.

Perform a complement operation of the list of intervals, i.e. returning the
ranges (tuples) that are not included in the list of intervals.
union_ranges() is first called on the intervals.

Note

the end parameter is there for cases where the ranges passed don’t
cover the whole space. Assuming a list of ranges from annotations on a
nucleotidic sequence, if the last range doesn’t include the last
position of the sequence, passing end equal to the length of the
sequence will make the function include a last range that includes it

	Parameters

	
	intervals (intervals) – iterable where each element is a closed range
(tuple)

	end (int [https://docs.python.org/3/library/functions.html#int]) – if the end of the complement intervals is supposed to be
outside the last range.

	Returns

	the list of intervals that complement the ones passed.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> complement_ranges([(1, 10), (11, 20), (25, 30)], end=100)
[(21, 24), (31, 100)]
>>> complement_ranges([(1, 10), (11, 20), (25, 30)])
[(21, 24)]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)])
[]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)], end=100)
[(21, 100)]

	
mgkit.utils.common.deprecated(func)

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.

from https://wiki.python.org/moin/PythonDecoratorLibrary

	
mgkit.utils.common.range_intersect(start1, end1, start2, end2)

	
New in version 0.1.13.

Given two ranges in the form (start, end), it returns the range
that is the intersection of the two.

	Parameters

	
	start1 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the first range

	end1 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the first range

	start2 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the second range

	end2 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the second range

	Returns

	returns a tuple with the start and end position for
the intersection of the two ranges, or None if the intersection is
empty

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
mgkit.utils.common.range_substract(start1, end1, start2, end2)

	

	
mgkit.utils.common.ranges_length(ranges)

	
New in version 0.1.12.

Given an iterable where each element is a range, a tuple whose elements
are numbers with the first being less than or equal to the second, the
function sums the lengths of all ranges.

Warning

it’s supposed to be used on intervals that were first passed to
functions like union_ranges(). If values overlap, there the sum
will be wrong

	Parameters

	ranges (iterable) – each element is a tuple like (1, 10)

	Returns

	sum of all ranges lengths

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mgkit.utils.common.union_range(start1, end1, start2, end2)

	
New in version 0.1.12.

Changed in version 0.3.1: changed behaviour, since the intervals are meant to be closed

If two numeric ranges overlap, it returns the new range, otherwise None is
returned. Works on both int and float numbers, even mixed.

	Parameters

	
	start1 (numeric) – start of range 1

	end1 (numeric) – end of range 1

	start2 (numeric) – start of range 2

	end2 (numeric) – end of range 2

	Returns

	union of the ranges or None if the ranges don’t
overlap

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or None [https://docs.python.org/3/library/constants.html#None])

Example

>>> union_range(10, 13, 1, 10)
(1, 13)
>>> union_range(1, 10, 11, 13)
(1, 13)
>>> union_range(1, 10, 12, 13)
None

	
mgkit.utils.common.union_ranges(intervals)

	
New in version 0.3.1.

From a list of ranges, assumed to be closed, performs a union of all
elements.

	Parameters

	intervals (intervals) – iterable where each element is a closed range
(tuple)

	Returns

	the list of ranges that are the union of all elements passed

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 17), (18, 20)])
[(1, 20)]
>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 14), (18, 20)])
[(1, 14), (18, 20)]

 mgkit.utils.dictionary module

mgkit.utils.dictionary module

Dictionary utils

	
class mgkit.utils.dictionary.HDFDict(file_name, table, cast=<type 'int'>, cache=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Changed in version 0.3.3: added cache in __init__

New in version 0.3.1.

Used a table in a HDFStore (from pandas) as a dictionary. The table must be
indexed to perform well. Read only.

Note

the dictionary cannot be modified and exception:ValueError will be
raised if the table is not in the file

	
mgkit.utils.dictionary.apply_func_to_values(dictionary, func)

	
New in version 0.1.12.

Assuming a dictionary whose values are iterables, func is applied to each
element of the iterable, retuning a set of all transformed elements.

	Parameters

	
	dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are iterables

	func (func) – function to apply to the dictionary values

	Returns

	dictionary with transformed values

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class mgkit.utils.dictionary.cache_dict_file(iterator, skip_lines=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.3.0.

Used to cache the result of a function that yields a tuple (key and value).
If the value is found in the internal dictionary (as the class behave), the
correspondent value is returned, otherwise the iterator is advanced until
the key is found.

Example

>>> from mgkit.io.blast import parse_accession_taxa_table
>>> i = parse_accession_taxa_table('nucl_gb.accession2taxid.gz', key=0)
>>> d = cache_dict_file(i)
>>> d['AH001684']
4400

	
next()

	

	
mgkit.utils.dictionary.combine_dict(keydict, valuedict)

	Combine two dictionaries when the values of keydict are iterables. The
combined dictionary has the same keys as keydict and the its values are
sets containing all the values associated to keydict values in valuedict.

key1 -> [v1, v2, .., vN]

v1 -> [u1, u2, .., uN]
v2 -> [t1, t2, .., tN]

Resulting dictionary will be

key1->{u1, u2, .., uN}

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.combine_dict_one_value(keydict, valuedict)

	Combine two dictionaries by the value of the keydict is used as a key in
valuedict and the resulting dictionary is composed of keydict keys and
valuedict values.

Same as comb_dict(), but each value in keydict is a single element
that is key in valuedict.

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.filter_nan(ratios)

	Returns a dictionary with the NaN values taken out

	
mgkit.utils.dictionary.filter_ratios_by_numbers(ratios, min_num)

	Returns from a dictionary only the items for which the length of the
iterables that is the value of the item, is equal or greater of min_num.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary key->list

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of elements in the value iterable

	Return dict

	filtered dictionary

	
mgkit.utils.dictionary.find_id_in_dict(s_id, s_dict)

	Finds a value ‘s_id’ in a dictionary in which the values are iterables.
Returns a list of keys that contain the value.

	Parameters

	
	s_id (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – element to look for in the dictionary’s values

	d (object [https://docs.python.org/3/library/functions.html#object]) – dictionary to search in

	Return list

	list of keys in which d was found

	
mgkit.utils.dictionary.link_ids(id_map, black_list=None)

	Given a dictionary whose values (iterables) can be linked back to other
keys, it returns a dictionary in which the keys are the original keys and
the values are sets of keys to which they can be linked.

key1->[v1, v2]
key2->[v3, v4]
key3->[v2, v4]

Becomes:

key1->[key1, key3]
key2->[key3]
key3->[key1, key2]

	Parameters

	
	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of keys to link

	black_list (iterable) – iterable of values to skip in making the links

	Return dict

	linked dictionary

	
mgkit.utils.dictionary.merge_dictionaries(dicts)

	
New in version 0.3.1.

Merges keys and values from a list/iterable of dictionaries. The resulting
dictionary’s values are converted into sets, with the assumption that the
values are one of the following: float, str, int, bool

	
mgkit.utils.dictionary.reverse_mapping(map_dict)

	Given a dictionary in the form: key->[v1, v2, .., vN], returns a dictionary
in the form: v1->[key1, key2, .., keyN]

	Parameters

	map_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to reverse

	Return dict

	reversed dictionary

	
mgkit.utils.dictionary.split_dictionary_by_value(value_dict, threshold, aggr_func=<function median>, key_filter=None)

	Splits a dictionary, whose values are iterables, based on a threshold:

	one in which the result of aggr_func is lower than the threshold
(first)

	one in which the result of aggr_func is equal or greater than the
threshold (second)

	Parameters

	
	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to be splitted

	threshold (number) – must be comparable to threshold

	aggr_func (func) – function used to aggregate the dictionary values

	key_filter (iterable) – if specified, only these key will be in the
resulting dictionary

	Returns

	two dictionaries

 mgkit.utils.sequence module

mgkit.utils.sequence module

Module containing functions related to sequence data

Note

For those functions without a docstring, look at the same with a
underscore (‘_’) prepended.

	
class mgkit.utils.sequence.Alignment(seqs=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple alignment class

	
add_seq(name, seq)

	Add a sequence to the alignment

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	
add_seqs(seqs)

	Add sequences to the alignment

	Parameters

	seqs (iterable) – iterable that returns (name, seq)

	
get_consensus(nucl=True)

	
Changed in version 0.1.16: added nucl parameter

The consensus sequence is constructed by checking the nucleotide that
has the maximum number of counts for each position in the alignment.

	Parameters

	nucl (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the alignment is nucleotidic

	Returns

	consensus sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_position(pos)

	Get all characters at a position

	Parameters

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position to return (0-based)

	Return str

	all characters occuring at the position

	
get_seq_len()

	Get the length of the alignment

	
get_snps(ref_seq=None, full_size=False)

	A SNP is called for the nucleotide that has the most counts among the
ones that differ in the each site of the alignment. If two nucleotides
have the same maximum count, one is randomly chosen.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence can be provided, if None, a
consensus sequence is produced for the alignment

	full_size (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a tuple is returned for each position in
the alignment. If there is no SNP at a position the value for the
SNP is None

	Return list

	a list of tuples (position, SNP)

	
mgkit.utils.sequence._get_kmers(seq, k)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a kmer of size k

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	k (int [https://docs.python.org/3/library/functions.html#int]) – kmer size

	Yields

	str – a portion of seq, of size k with a step of 1

	
mgkit.utils.sequence._sequence_signature(seq, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Returns the signature of a sequence, based on a kmer length, over a sliding
window. Each sliding window signature is placed in order into a list, with
each element being a collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instance whose keys are
the kmer found in that window.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to get the signature

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window()

	Returns

	a list of collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instances, for each
window used

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.utils.sequence._signatures_matrix(seqs, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Return a matrix (pandas.DataFrame) where the columns are the kmer found in
all sequences seqs and the rows are the a MultiIndex with the first level
being the sequnce name and the second the index of the sliding window for
which a signature was computed.

	Parameters

	
	seqs (iterable) – iterable that yields a tuple, with the first element
being the sequence name and the second the sequence itself

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window(), defaults to half of
the window size

	Returns

	a DataFrame where the columns are the kmers and the
rows are the signatures of each contigs/windows.

	Return type

	pandas.DataFrame

	
mgkit.utils.sequence._sliding_window(seq, size, step=None)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a subsequence of size
size, with a step of step.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequnece

	size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window

	step (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – the step to use in the sliding window. If None,
half of the sequence length is used

	Yields

	str – a subsequence of size size and step step

	
mgkit.utils.sequence.calc_n50(seq_lengths)

	Calculate the N50 statistics for a numpy.array of sequence
lengths.

The algorithm finds in the supplied array the element (contig length) for
which the sum all contig lengths equal or greater than it is equal to half
of all assembled base pairs.

	Parameters

	seq_lengths (array) – an instance of a numpy array containing the
sequence lengths

	Return int

	the N50 statistics value

	
mgkit.utils.sequence.check_snp_in_seq(ref_seq, pos, change, start=0, trans_table=None)

	Check a SNP in a reference sequence if it is a synonymous or non-synonymous
change.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	pos (int [https://docs.python.org/3/library/functions.html#int]) – SNP position - it is expected to be a 1 based index

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide change occuring at pos

	start (int [https://docs.python.org/3/library/functions.html#int]) – the starting position for the coding region - 0 based
index

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return bool

	True if it is a synonymous change, False if non-synonymous

	
mgkit.utils.sequence.convert_aa_to_nuc_coord(start, end, frame=0)

	Converts aa coordinates to nucleotidic ones. The coordinates must be from
‘+’ strand. For the ‘-‘ strand, use reverse_aa_coord() first.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation (lowest number)

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation (highest number)

	frame (int [https://docs.python.org/3/library/functions.html#int]) – frame of the AA translation (0, 1 or 2)

	Returns

	the first element is the converted start and the second
element is the converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

the coordinates are assumed to be 1-based indices

	
mgkit.utils.sequence.extrapolate_model(quals, frac=0.5, scale_adj=0.5)

	
New in version 0.3.3.

Extrapolate a quality model from a list of qualities. It uses internally
a LOWESS as the base, which is used to estimate the noise as a normal
distribution.

	Parameters

	
	quals (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of arrays of qualities, sorted by position in the
corresponding sequence

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the data used for the LOWESS fit (uses
statsmodels)

	scale_adj (float [https://docs.python.org/3/library/functions.html#float]) – value by which the scale of the normal distribution
will be multiplied. Defaults to halving the scale

	Returns

	the first element is the qualities fit with a LOWESS, the second
element is the distribution

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_contigs_info(file_name, pp=False)

	
Changed in version 0.2.4: file_name can be a dict name->seq or a list of sequences

New in version 0.2.1.

Given a file name for a fasta file with sequences, a dictionary of
name->seq, or a list of sequences, returns the following information in a
tuple, or a string if pp is True:

	number of sequences

	total base pairs

	max length

	min length

	average length

	N50 statistic

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file to open

	pp (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a formatted string is returned

	Returns

	the returned value depends on the value of pp, if True a
formatted string is returned, otherwise the tuple with all values is.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_seq_expected_syn_count(seq, start=0, syn_matrix=None)

	Calculate the expected number of synonymous and non-synonymous changes in a
nucleotide sequence. Assumes that the sequence is already in the correct
frame and its length is a multiple of 3.

	Parameters

	
	seq (iterable) – nucleotide sequence (uppercase chars)

	start (int [https://docs.python.org/3/library/functions.html#int]) – frame of the sequence

	syn_matrix (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that contains the expected number of
changes for a codon, as returned by get_syn_matrix()

	Return tuple

	tuple with counts of expected counts (syn, nonsyn)

	
mgkit.utils.sequence.get_seq_number_of_syn(ref_seq, snps, start=0, trans_table=None)

	Given a reference sequence and a list of SNPs, calculates the number of
synonymous and non-synonymous SNP.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	snps (iterable) – list of tuples (position, SNP) - zero based index

	start (int [https://docs.python.org/3/library/functions.html#int]) – the frame used for the reference {0, 1, 2}

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return tuple

	synonymous and non-synonymous counts

	
mgkit.utils.sequence.get_syn_matrix(trans_table=None, nuc_list=None)

	Returns a dictionary containing the expected count of synonymous and
non-synonymous changes that a codon can have if one base is allowed to
change at a time.

There are 9 possible changes per codon.

	Parameters

	
	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a tranlation table, defaults to
seq_utils.TRANS_TABLE

	nuc_list (iterable) – a list of nucleotides in which a base can change,
default to the keys of seq_utils.REV_COMP

	Return dict

	returns a dictionary in which for each codon a dictionary
{‘syn’: 0, ‘nonsyn’: 0} holds the number of expected changes

	
mgkit.utils.sequence.get_syn_matrix_all(trans_table=None)

	Same as get_syn_matrix() but a codon can change in any of the ones
included in trans_table.

There are 63 possible changes per codon.

	
mgkit.utils.sequence.get_variant_sequence(seq, *snps)

	
New in version 0.1.16.

Return a sequence changed in the positions requested.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a sequence

	*snps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – each argument passed is a tuple with the first element
as a position in the sequence (1-based index) and the second
element is the character to substitute in the sequence

	Returns

	string with the changed characters

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> get_variant_sequence('ACTGATATATGCGCGCATCT', (1, 'C'))
'CCTGNTGTATGCGCGCATCT'

Note

It is used for nucleotide sequences, but it is valid to use any string

	
mgkit.utils.sequence.make_reverse_table(tbl=None)

	Makes table to reverse complement a sequence by reverse_complement().
The table used is the complement for each nucleotide, defaulting to
REV_COMP

	
mgkit.utils.sequence.put_gaps_in_nuc_seq(nuc_seq, aa_seq, trim=True)

	Match the gaps in an amino-acid aligned sequence to its original nucleotide
sequence. If the nucleotide sequence is not a multiple of 3, the trim
option by default trim those bases from the output.

	Parameters

	
	nuc_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – original nucleotide sequence

	aa_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – aligned amino-acid sequence

	trim (bool [https://docs.python.org/3/library/functions.html#bool]) – if True trim last nucleotide(s)

	Return str

	gapped nucleotide sequence

	
mgkit.utils.sequence.qualities_model_constant(length=150, scale=1, loc=35)

	
New in version 0.3.3.

Model with constant quality

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.qualities_model_decrease(length=150, scale=None, loc=35)

	
New in version 0.3.3.

The model is a decreasing one, from 35 and depends on the length of the
sequence.

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.random_qualities(n=1, length=150, model=None)

	
New in version 0.3.3.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of quality arrays to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the quality array

	model (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a tuple specifying the qualities and error distribution,
if None qualities_model_decrease() is used

	Yields

	numpy.array – numpy array of qualities, with the maximum value of 40

	
mgkit.utils.sequence.random_sequences(n=1, length=150, p=None)

	
New in version 0.3.3.

Returns an iterator of random squences, where each nucleotide probability
can be customised in the order (A, C, T, G)

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of each sequence

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple with the probability of a nucleotide to occur, in the
order A, C, T, G

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.random_sequences_codon(n=1, length=150, codons=['CTT', 'TAG', 'ACA', 'AAA', 'ATC', 'AAC', 'ATA', 'AGG', 'CCT', 'ACT', 'AGC', 'AAG', 'AGA', 'CAT', 'AAT', 'ATT', 'CTG', 'CTA', 'CTC', 'CAC', 'TGG', 'CAA', 'AGT', 'CCA', 'CCG', 'CCC', 'TAT', 'GGT', 'TGT', 'CGA', 'CAG', 'TCT', 'GAT', 'CGG', 'TTT', 'TGC', 'GGG', 'TGA', 'GGA', 'TAA', 'ACG', 'TAC', 'TTC', 'TCG', 'TTA', 'TTG', 'TCC', 'ACC', 'TCA', 'GCA', 'GTA', 'GCC', 'GTC', 'GGC', 'GCG', 'GTG', 'GAG', 'GTT', 'GCT', 'GAC', 'CGT', 'GAA', 'ATG', 'CGC'], p=None, frame=None)

	
New in version 0.3.3.

Returns an iterator of nucleotidic sequences, based on a defined genetic
code (passed as parameter, defaults to the universal one). The sequence if
first sampled with replacement from the codon list, with a number of codons
that covers the length chosen plus an additional one to allow a frame shift
as set by frame

Note

If the probability (for each codon) are supplied, the number of
sequences required to match those probabilities within a 10% margin of
error is of at least 10.000 sequences, for 5% at leas 100.000

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the sequences

	codons (iterable) – codons used when generating the sequences

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – probability of each codon occurence, in the same order as
codons

	frame (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – used to define a specific frame shift occuring in
the sequence (0 to 2) or a random one (if None)

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.reverse_aa_coord(start, end, seq_len)

	Used to reverse amino-acid coordinates when parsing an AA annotation on
the - strand. Used when the BLAST or HMMER annotations use AA sequences.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – aa sequence length

	Returns

	reversed (from strand - to strand +) coordinates. The first
element is the converted start and the second element is the
converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

	start and end are 1-based indices

	
mgkit.utils.sequence.reverse_complement(seq, tbl='\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+, -./0123456789:;<=>?@TBGDEFCHIJKLMNOPQRSAUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff')

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table returned by make_reverse_table()

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.reverse_complement_old(seq, tbl=None)

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of complement bases, like REV_COMP

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.sequence_composition(sequence, chars=('A', 'C', 'T', 'G'))

	
New in version 0.1.13.

Returns the number of occurences of each unique character in the sequence

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	chars (iterable, None [https://docs.python.org/3/library/constants.html#None]) – iterable of the chars to test, default to
(A, C, T, G). if None checks all unique characters in the sequencce

	Yields

	tuple – the first element is the nucleotide and the second is the number
of occurences in sequence

	
mgkit.utils.sequence.sequence_gc_content(sequence)

	
Changed in version 0.3.3: in case of ZeroDivisionError returns .5

New in version 0.1.13.

Calculate GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC content

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.sequence_gc_ratio(sequence)

	
New in version 0.1.13.

Calculate GC ratio information for a sequence. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC ratio, or numpy.nan if G = C = 0

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.translate_sequence(sequence, start=0, tbl=None, reverse=False)

	Translate a nucleotide sequence in an amino acid one.

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to translate, it’s expected to be all caps

	start (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the translation to start

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, reverse_complement() will be called and
the returned sequence translated

	Return str

	the translated sequence

 mgkit.utils.trans_tables module

mgkit.utils.trans_tables module

The module contains translation tables

Not all genetic codes are included, taken from:
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG2

 mgkit.utils.common module

mgkit.utils.common module

Utility functions

	
mgkit.utils.common.apply_func_window(func, data, window, step=0)

	

	
mgkit.utils.common.average_length(a1s, a1e, a2s, a2e)

	Given two sets of coordinates, a1 and a2, returns the average length.

	Parameters

	
	a1s (int [https://docs.python.org/3/library/functions.html#int]) – a1 leftmost number

	a1e (int [https://docs.python.org/3/library/functions.html#int]) – a1 rightmost number

	a2s (int [https://docs.python.org/3/library/functions.html#int]) – a2 leftmost number

	a2e (int [https://docs.python.org/3/library/functions.html#int]) – a2 rightmost number

	Return float

	the average length

	
mgkit.utils.common.between(pos, start, end)

	Tests if a number is between two others

	Parameters

	
	pos (int [https://docs.python.org/3/library/functions.html#int]) – number to test

	start (int [https://docs.python.org/3/library/functions.html#int]) – leftmost number

	end (int [https://docs.python.org/3/library/functions.html#int]) – rightmost number

	Return bool

	if the number is between start and end

	
mgkit.utils.common.complement_ranges(intervals, end=None)

	
New in version 0.3.1.

Perform a complement operation of the list of intervals, i.e. returning the
ranges (tuples) that are not included in the list of intervals.
union_ranges() is first called on the intervals.

Note

the end parameter is there for cases where the ranges passed don’t
cover the whole space. Assuming a list of ranges from annotations on a
nucleotidic sequence, if the last range doesn’t include the last
position of the sequence, passing end equal to the length of the
sequence will make the function include a last range that includes it

	Parameters

	
	intervals (intervals) – iterable where each element is a closed range
(tuple)

	end (int [https://docs.python.org/3/library/functions.html#int]) – if the end of the complement intervals is supposed to be
outside the last range.

	Returns

	the list of intervals that complement the ones passed.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> complement_ranges([(1, 10), (11, 20), (25, 30)], end=100)
[(21, 24), (31, 100)]
>>> complement_ranges([(1, 10), (11, 20), (25, 30)])
[(21, 24)]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)])
[]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)], end=100)
[(21, 100)]

	
mgkit.utils.common.deprecated(func)

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.

from https://wiki.python.org/moin/PythonDecoratorLibrary

	
mgkit.utils.common.range_intersect(start1, end1, start2, end2)

	
New in version 0.1.13.

Given two ranges in the form (start, end), it returns the range
that is the intersection of the two.

	Parameters

	
	start1 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the first range

	end1 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the first range

	start2 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the second range

	end2 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the second range

	Returns

	returns a tuple with the start and end position for
the intersection of the two ranges, or None if the intersection is
empty

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
mgkit.utils.common.range_substract(start1, end1, start2, end2)

	

	
mgkit.utils.common.ranges_length(ranges)

	
New in version 0.1.12.

Given an iterable where each element is a range, a tuple whose elements
are numbers with the first being less than or equal to the second, the
function sums the lengths of all ranges.

Warning

it’s supposed to be used on intervals that were first passed to
functions like union_ranges(). If values overlap, there the sum
will be wrong

	Parameters

	ranges (iterable) – each element is a tuple like (1, 10)

	Returns

	sum of all ranges lengths

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mgkit.utils.common.union_range(start1, end1, start2, end2)

	
New in version 0.1.12.

Changed in version 0.3.1: changed behaviour, since the intervals are meant to be closed

If two numeric ranges overlap, it returns the new range, otherwise None is
returned. Works on both int and float numbers, even mixed.

	Parameters

	
	start1 (numeric) – start of range 1

	end1 (numeric) – end of range 1

	start2 (numeric) – start of range 2

	end2 (numeric) – end of range 2

	Returns

	union of the ranges or None if the ranges don’t
overlap

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or None [https://docs.python.org/3/library/constants.html#None])

Example

>>> union_range(10, 13, 1, 10)
(1, 13)
>>> union_range(1, 10, 11, 13)
(1, 13)
>>> union_range(1, 10, 12, 13)
None

	
mgkit.utils.common.union_ranges(intervals)

	
New in version 0.3.1.

From a list of ranges, assumed to be closed, performs a union of all
elements.

	Parameters

	intervals (intervals) – iterable where each element is a closed range
(tuple)

	Returns

	the list of ranges that are the union of all elements passed

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 17), (18, 20)])
[(1, 20)]
>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 14), (18, 20)])
[(1, 14), (18, 20)]

 mgkit.utils.dictionary module

mgkit.utils.dictionary module

Dictionary utils

	
class mgkit.utils.dictionary.HDFDict(file_name, table, cast=<type 'int'>, cache=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Changed in version 0.3.3: added cache in __init__

New in version 0.3.1.

Used a table in a HDFStore (from pandas) as a dictionary. The table must be
indexed to perform well. Read only.

Note

the dictionary cannot be modified and exception:ValueError will be
raised if the table is not in the file

	
mgkit.utils.dictionary.apply_func_to_values(dictionary, func)

	
New in version 0.1.12.

Assuming a dictionary whose values are iterables, func is applied to each
element of the iterable, retuning a set of all transformed elements.

	Parameters

	
	dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are iterables

	func (func) – function to apply to the dictionary values

	Returns

	dictionary with transformed values

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class mgkit.utils.dictionary.cache_dict_file(iterator, skip_lines=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.3.0.

Used to cache the result of a function that yields a tuple (key and value).
If the value is found in the internal dictionary (as the class behave), the
correspondent value is returned, otherwise the iterator is advanced until
the key is found.

Example

>>> from mgkit.io.blast import parse_accession_taxa_table
>>> i = parse_accession_taxa_table('nucl_gb.accession2taxid.gz', key=0)
>>> d = cache_dict_file(i)
>>> d['AH001684']
4400

	
next()

	

	
mgkit.utils.dictionary.combine_dict(keydict, valuedict)

	Combine two dictionaries when the values of keydict are iterables. The
combined dictionary has the same keys as keydict and the its values are
sets containing all the values associated to keydict values in valuedict.

key1 -> [v1, v2, .., vN]

v1 -> [u1, u2, .., uN]
v2 -> [t1, t2, .., tN]

Resulting dictionary will be

key1->{u1, u2, .., uN}

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.combine_dict_one_value(keydict, valuedict)

	Combine two dictionaries by the value of the keydict is used as a key in
valuedict and the resulting dictionary is composed of keydict keys and
valuedict values.

Same as comb_dict(), but each value in keydict is a single element
that is key in valuedict.

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.filter_nan(ratios)

	Returns a dictionary with the NaN values taken out

	
mgkit.utils.dictionary.filter_ratios_by_numbers(ratios, min_num)

	Returns from a dictionary only the items for which the length of the
iterables that is the value of the item, is equal or greater of min_num.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary key->list

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of elements in the value iterable

	Return dict

	filtered dictionary

	
mgkit.utils.dictionary.find_id_in_dict(s_id, s_dict)

	Finds a value ‘s_id’ in a dictionary in which the values are iterables.
Returns a list of keys that contain the value.

	Parameters

	
	s_id (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – element to look for in the dictionary’s values

	d (object [https://docs.python.org/3/library/functions.html#object]) – dictionary to search in

	Return list

	list of keys in which d was found

	
mgkit.utils.dictionary.link_ids(id_map, black_list=None)

	Given a dictionary whose values (iterables) can be linked back to other
keys, it returns a dictionary in which the keys are the original keys and
the values are sets of keys to which they can be linked.

key1->[v1, v2]
key2->[v3, v4]
key3->[v2, v4]

Becomes:

key1->[key1, key3]
key2->[key3]
key3->[key1, key2]

	Parameters

	
	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of keys to link

	black_list (iterable) – iterable of values to skip in making the links

	Return dict

	linked dictionary

	
mgkit.utils.dictionary.merge_dictionaries(dicts)

	
New in version 0.3.1.

Merges keys and values from a list/iterable of dictionaries. The resulting
dictionary’s values are converted into sets, with the assumption that the
values are one of the following: float, str, int, bool

	
mgkit.utils.dictionary.reverse_mapping(map_dict)

	Given a dictionary in the form: key->[v1, v2, .., vN], returns a dictionary
in the form: v1->[key1, key2, .., keyN]

	Parameters

	map_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to reverse

	Return dict

	reversed dictionary

	
mgkit.utils.dictionary.split_dictionary_by_value(value_dict, threshold, aggr_func=<function median>, key_filter=None)

	Splits a dictionary, whose values are iterables, based on a threshold:

	one in which the result of aggr_func is lower than the threshold
(first)

	one in which the result of aggr_func is equal or greater than the
threshold (second)

	Parameters

	
	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to be splitted

	threshold (number) – must be comparable to threshold

	aggr_func (func) – function used to aggregate the dictionary values

	key_filter (iterable) – if specified, only these key will be in the
resulting dictionary

	Returns

	two dictionaries

 mgkit.utils.sequence module

mgkit.utils.sequence module

Module containing functions related to sequence data

Note

For those functions without a docstring, look at the same with a
underscore (‘_’) prepended.

	
class mgkit.utils.sequence.Alignment(seqs=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple alignment class

	
add_seq(name, seq)

	Add a sequence to the alignment

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	
add_seqs(seqs)

	Add sequences to the alignment

	Parameters

	seqs (iterable) – iterable that returns (name, seq)

	
get_consensus(nucl=True)

	
Changed in version 0.1.16: added nucl parameter

The consensus sequence is constructed by checking the nucleotide that
has the maximum number of counts for each position in the alignment.

	Parameters

	nucl (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the alignment is nucleotidic

	Returns

	consensus sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_position(pos)

	Get all characters at a position

	Parameters

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position to return (0-based)

	Return str

	all characters occuring at the position

	
get_seq_len()

	Get the length of the alignment

	
get_snps(ref_seq=None, full_size=False)

	A SNP is called for the nucleotide that has the most counts among the
ones that differ in the each site of the alignment. If two nucleotides
have the same maximum count, one is randomly chosen.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence can be provided, if None, a
consensus sequence is produced for the alignment

	full_size (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a tuple is returned for each position in
the alignment. If there is no SNP at a position the value for the
SNP is None

	Return list

	a list of tuples (position, SNP)

	
mgkit.utils.sequence._get_kmers(seq, k)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a kmer of size k

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	k (int [https://docs.python.org/3/library/functions.html#int]) – kmer size

	Yields

	str – a portion of seq, of size k with a step of 1

	
mgkit.utils.sequence._sequence_signature(seq, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Returns the signature of a sequence, based on a kmer length, over a sliding
window. Each sliding window signature is placed in order into a list, with
each element being a collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instance whose keys are
the kmer found in that window.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to get the signature

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window()

	Returns

	a list of collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instances, for each
window used

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.utils.sequence._signatures_matrix(seqs, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Return a matrix (pandas.DataFrame) where the columns are the kmer found in
all sequences seqs and the rows are the a MultiIndex with the first level
being the sequnce name and the second the index of the sliding window for
which a signature was computed.

	Parameters

	
	seqs (iterable) – iterable that yields a tuple, with the first element
being the sequence name and the second the sequence itself

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window(), defaults to half of
the window size

	Returns

	a DataFrame where the columns are the kmers and the
rows are the signatures of each contigs/windows.

	Return type

	pandas.DataFrame

	
mgkit.utils.sequence._sliding_window(seq, size, step=None)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a subsequence of size
size, with a step of step.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequnece

	size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window

	step (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – the step to use in the sliding window. If None,
half of the sequence length is used

	Yields

	str – a subsequence of size size and step step

	
mgkit.utils.sequence.calc_n50(seq_lengths)

	Calculate the N50 statistics for a numpy.array of sequence
lengths.

The algorithm finds in the supplied array the element (contig length) for
which the sum all contig lengths equal or greater than it is equal to half
of all assembled base pairs.

	Parameters

	seq_lengths (array) – an instance of a numpy array containing the
sequence lengths

	Return int

	the N50 statistics value

	
mgkit.utils.sequence.check_snp_in_seq(ref_seq, pos, change, start=0, trans_table=None)

	Check a SNP in a reference sequence if it is a synonymous or non-synonymous
change.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	pos (int [https://docs.python.org/3/library/functions.html#int]) – SNP position - it is expected to be a 1 based index

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide change occuring at pos

	start (int [https://docs.python.org/3/library/functions.html#int]) – the starting position for the coding region - 0 based
index

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return bool

	True if it is a synonymous change, False if non-synonymous

	
mgkit.utils.sequence.convert_aa_to_nuc_coord(start, end, frame=0)

	Converts aa coordinates to nucleotidic ones. The coordinates must be from
‘+’ strand. For the ‘-‘ strand, use reverse_aa_coord() first.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation (lowest number)

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation (highest number)

	frame (int [https://docs.python.org/3/library/functions.html#int]) – frame of the AA translation (0, 1 or 2)

	Returns

	the first element is the converted start and the second
element is the converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

the coordinates are assumed to be 1-based indices

	
mgkit.utils.sequence.extrapolate_model(quals, frac=0.5, scale_adj=0.5)

	
New in version 0.3.3.

Extrapolate a quality model from a list of qualities. It uses internally
a LOWESS as the base, which is used to estimate the noise as a normal
distribution.

	Parameters

	
	quals (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of arrays of qualities, sorted by position in the
corresponding sequence

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the data used for the LOWESS fit (uses
statsmodels)

	scale_adj (float [https://docs.python.org/3/library/functions.html#float]) – value by which the scale of the normal distribution
will be multiplied. Defaults to halving the scale

	Returns

	the first element is the qualities fit with a LOWESS, the second
element is the distribution

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_contigs_info(file_name, pp=False)

	
Changed in version 0.2.4: file_name can be a dict name->seq or a list of sequences

New in version 0.2.1.

Given a file name for a fasta file with sequences, a dictionary of
name->seq, or a list of sequences, returns the following information in a
tuple, or a string if pp is True:

	number of sequences

	total base pairs

	max length

	min length

	average length

	N50 statistic

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file to open

	pp (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a formatted string is returned

	Returns

	the returned value depends on the value of pp, if True a
formatted string is returned, otherwise the tuple with all values is.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_seq_expected_syn_count(seq, start=0, syn_matrix=None)

	Calculate the expected number of synonymous and non-synonymous changes in a
nucleotide sequence. Assumes that the sequence is already in the correct
frame and its length is a multiple of 3.

	Parameters

	
	seq (iterable) – nucleotide sequence (uppercase chars)

	start (int [https://docs.python.org/3/library/functions.html#int]) – frame of the sequence

	syn_matrix (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that contains the expected number of
changes for a codon, as returned by get_syn_matrix()

	Return tuple

	tuple with counts of expected counts (syn, nonsyn)

	
mgkit.utils.sequence.get_seq_number_of_syn(ref_seq, snps, start=0, trans_table=None)

	Given a reference sequence and a list of SNPs, calculates the number of
synonymous and non-synonymous SNP.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	snps (iterable) – list of tuples (position, SNP) - zero based index

	start (int [https://docs.python.org/3/library/functions.html#int]) – the frame used for the reference {0, 1, 2}

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return tuple

	synonymous and non-synonymous counts

	
mgkit.utils.sequence.get_syn_matrix(trans_table=None, nuc_list=None)

	Returns a dictionary containing the expected count of synonymous and
non-synonymous changes that a codon can have if one base is allowed to
change at a time.

There are 9 possible changes per codon.

	Parameters

	
	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a tranlation table, defaults to
seq_utils.TRANS_TABLE

	nuc_list (iterable) – a list of nucleotides in which a base can change,
default to the keys of seq_utils.REV_COMP

	Return dict

	returns a dictionary in which for each codon a dictionary
{‘syn’: 0, ‘nonsyn’: 0} holds the number of expected changes

	
mgkit.utils.sequence.get_syn_matrix_all(trans_table=None)

	Same as get_syn_matrix() but a codon can change in any of the ones
included in trans_table.

There are 63 possible changes per codon.

	
mgkit.utils.sequence.get_variant_sequence(seq, *snps)

	
New in version 0.1.16.

Return a sequence changed in the positions requested.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a sequence

	*snps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – each argument passed is a tuple with the first element
as a position in the sequence (1-based index) and the second
element is the character to substitute in the sequence

	Returns

	string with the changed characters

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> get_variant_sequence('ACTGATATATGCGCGCATCT', (1, 'C'))
'CCTGNTGTATGCGCGCATCT'

Note

It is used for nucleotide sequences, but it is valid to use any string

	
mgkit.utils.sequence.make_reverse_table(tbl=None)

	Makes table to reverse complement a sequence by reverse_complement().
The table used is the complement for each nucleotide, defaulting to
REV_COMP

	
mgkit.utils.sequence.put_gaps_in_nuc_seq(nuc_seq, aa_seq, trim=True)

	Match the gaps in an amino-acid aligned sequence to its original nucleotide
sequence. If the nucleotide sequence is not a multiple of 3, the trim
option by default trim those bases from the output.

	Parameters

	
	nuc_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – original nucleotide sequence

	aa_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – aligned amino-acid sequence

	trim (bool [https://docs.python.org/3/library/functions.html#bool]) – if True trim last nucleotide(s)

	Return str

	gapped nucleotide sequence

	
mgkit.utils.sequence.qualities_model_constant(length=150, scale=1, loc=35)

	
New in version 0.3.3.

Model with constant quality

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.qualities_model_decrease(length=150, scale=None, loc=35)

	
New in version 0.3.3.

The model is a decreasing one, from 35 and depends on the length of the
sequence.

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.random_qualities(n=1, length=150, model=None)

	
New in version 0.3.3.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of quality arrays to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the quality array

	model (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a tuple specifying the qualities and error distribution,
if None qualities_model_decrease() is used

	Yields

	numpy.array – numpy array of qualities, with the maximum value of 40

	
mgkit.utils.sequence.random_sequences(n=1, length=150, p=None)

	
New in version 0.3.3.

Returns an iterator of random squences, where each nucleotide probability
can be customised in the order (A, C, T, G)

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of each sequence

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple with the probability of a nucleotide to occur, in the
order A, C, T, G

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.random_sequences_codon(n=1, length=150, codons=['CTT', 'TAG', 'ACA', 'AAA', 'ATC', 'AAC', 'ATA', 'AGG', 'CCT', 'ACT', 'AGC', 'AAG', 'AGA', 'CAT', 'AAT', 'ATT', 'CTG', 'CTA', 'CTC', 'CAC', 'TGG', 'CAA', 'AGT', 'CCA', 'CCG', 'CCC', 'TAT', 'GGT', 'TGT', 'CGA', 'CAG', 'TCT', 'GAT', 'CGG', 'TTT', 'TGC', 'GGG', 'TGA', 'GGA', 'TAA', 'ACG', 'TAC', 'TTC', 'TCG', 'TTA', 'TTG', 'TCC', 'ACC', 'TCA', 'GCA', 'GTA', 'GCC', 'GTC', 'GGC', 'GCG', 'GTG', 'GAG', 'GTT', 'GCT', 'GAC', 'CGT', 'GAA', 'ATG', 'CGC'], p=None, frame=None)

	
New in version 0.3.3.

Returns an iterator of nucleotidic sequences, based on a defined genetic
code (passed as parameter, defaults to the universal one). The sequence if
first sampled with replacement from the codon list, with a number of codons
that covers the length chosen plus an additional one to allow a frame shift
as set by frame

Note

If the probability (for each codon) are supplied, the number of
sequences required to match those probabilities within a 10% margin of
error is of at least 10.000 sequences, for 5% at leas 100.000

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the sequences

	codons (iterable) – codons used when generating the sequences

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – probability of each codon occurence, in the same order as
codons

	frame (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – used to define a specific frame shift occuring in
the sequence (0 to 2) or a random one (if None)

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.reverse_aa_coord(start, end, seq_len)

	Used to reverse amino-acid coordinates when parsing an AA annotation on
the - strand. Used when the BLAST or HMMER annotations use AA sequences.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – aa sequence length

	Returns

	reversed (from strand - to strand +) coordinates. The first
element is the converted start and the second element is the
converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

	start and end are 1-based indices

	
mgkit.utils.sequence.reverse_complement(seq, tbl='\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+, -./0123456789:;<=>?@TBGDEFCHIJKLMNOPQRSAUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff')

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table returned by make_reverse_table()

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.reverse_complement_old(seq, tbl=None)

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of complement bases, like REV_COMP

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.sequence_composition(sequence, chars=('A', 'C', 'T', 'G'))

	
New in version 0.1.13.

Returns the number of occurences of each unique character in the sequence

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	chars (iterable, None [https://docs.python.org/3/library/constants.html#None]) – iterable of the chars to test, default to
(A, C, T, G). if None checks all unique characters in the sequencce

	Yields

	tuple – the first element is the nucleotide and the second is the number
of occurences in sequence

	
mgkit.utils.sequence.sequence_gc_content(sequence)

	
Changed in version 0.3.3: in case of ZeroDivisionError returns .5

New in version 0.1.13.

Calculate GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC content

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.sequence_gc_ratio(sequence)

	
New in version 0.1.13.

Calculate GC ratio information for a sequence. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC ratio, or numpy.nan if G = C = 0

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.translate_sequence(sequence, start=0, tbl=None, reverse=False)

	Translate a nucleotide sequence in an amino acid one.

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to translate, it’s expected to be all caps

	start (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the translation to start

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, reverse_complement() will be called and
the returned sequence translated

	Return str

	the translated sequence

 mgkit.utils.trans_tables module

mgkit.utils.trans_tables module

The module contains translation tables

Not all genetic codes are included, taken from:
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG2

 mgkit.workflow package

mgkit.workflow package

Submodules

	mgkit.workflow.add_gff_info module
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	mgkit.workflow.blast2gff module
	Uniprot

	BlastDB

	Changes

	mgkit.workflow.extract_gff_info module
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	mgkit.workflow.fasta_utils module
	split command

	translate command

	uid command

	Changes

	mgkit.workflow.fastq_utils module
	Commands

	Changes

	mgkit.workflow.filter_gff module
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	mgkit.workflow.hmmer2gff module
	Changes

	mgkit.workflow.json2gff module
	mongodb command

	mgkit.workflow.sampling_utils module
	Resampling Utilities
	sample command

	sample_stream command

	sync command

	rand_seq command

	Changes

	mgkit.workflow.snp_parser module
	Changes

	mgkit.workflow.taxon_utils module
	Last Common Ancestor (lca and lca_line)
	Krona Output

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	mgkit.workflow.utils module

Module contents

Workflows used to script the library - execute bits of the pipelines supported

 mgkit.workflow.add_gff_info module

mgkit.workflow.add_gff_info module

Add more information to GFF annotations: gene mappings, coverage, taxonomy,
etc..

Uniprot Command

If the gene_id of an annotation is a Uniprot ID, the script queries Uniprot
for the requested information. At the moment the information that can be added
is the taxon_id, taxon_name, lineage and mapping to EC, KO, eggNOG IDs.

It’s also possible to add mappings to other databases using the -m option
with the correct identifier for the mapping, which can be found at this page [http://www.uniprot.org/faq/28]; for example if it’s we want to add the
mappings of uniprot IDs to BioCyc, in the abbreviation column of the
mappings we find that it’s identifier is REACTOME_ID, so we pass
-m REACTOME to the script (leaving _ID out). Mapped IDs are separated by
commas.

The taxonomy IDs are not overwritten if they are found in the annotations, the
-f is provided to force the overwriting of those values.

See also MGKit GFF Specifications for more informations about the GFF specifications
used.

Note

As the script needs to query Uniprot a lot, it is recommended to split
the GFF in several files, so an error in the connection doesn’t waste time.

However, a cache is kept to reduce the number of connections

Coverage Command

Adds coverage information from BAM alignment files to a GFF file, using the
function mgkit.align.add_coverage_info(), the user needs to supply for
each sample a BAM file, using the -a option, whose parameter is in the form
sample,samplealg.bam. More samples can be supplied adding more -a
arguments.

Hint

As an example, to add coverage for sample1, sample2 the command line
is:

add-gff-info coverage -a sample1,sample1.bam -a sample2,sample2.bam \
inputgff outputgff

A total coverage for the annotation is also calculated and stored in the
cov attribute, while each sample coverage is stored into sample_cov as per
MGKit GFF Specifications.

Adding Coverage from samtools depth

The cov_samtools allows the use of the output of samtools depth
command. The -aa options must be used to pass information about all base
pairs and sequences coverage in the BAM/SAM file. The command work similarly to
coverage, accepting compressed depth files as well. If only one depth
file is passed and no sample is passed, the attribute in the GFF will be cov,
otherwise the attribute will be sample1_cov, sample2_cov, etc.

To create samtools depth files, this command must be used:

$ samtools depth -aa bam_file

Uniprot Offline Mappings

Similar to the uniprot command, it uses the idmapping [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz]
file provided by Uniprot, which speeds up the process of adding mappings and
taxonomy IDs from Uniprot gene IDs. It’s not possible tough to add EC
mappings with this command, as those are not included in the file.

Kegg Information

The kegg command allows to add information to each annotation. Right now the
information that can be added is restricted to the pathway(s) (reference KO) a
KO is part of and both the KO and pathway(s) descriptions. This information is
stored in keys starting with ko_.

Expected Aminoacidic Changes

Some scripts, like snp_parser - SNPs analysis, require information about the expected
number of synonymous and non-synonymous changes of an annotation. This can be
done using mgkit.io.gff.Annotation.add_exp_syn_count() by the user of the
command exp_syn of this script. The attributes added to each annotation are
explained in the MGKit GFF Specifications

Adding Count Data

Count data on a per-sample basis can be added with the counts command. The
accepted inputs are from HTSeq-count and featureCounts. The ouput produced by
featureCounts, is the one from using its -f option must be used.

This script accept by default a tab separated file, with a uid in the first
column and the other columns are the counts for each sample, in the same order
as they are passed to the -s option. To use the featureCounts file format,
this script -e option must be used.

The sample names must be provided in the same order as the columns in the input
files. If the counts are FPKMS the -f option can be used.

Adding Taxonomy from a Table

There are cases where it may needed or preferred to add the taxonomy from a
gene_id already provided in the GFF file. For such cases the addtaxa
command can be used. It works in a similar way to the taxonomy command, only
it expect three different type of inputs:

	GI-Taxa table from NCBI (e.g. gi_taxid_nucl.dmp,)

	tab separated table

	dictionary

	HDF5

The first two are tab separated files, where on each line, the first column is
the gene_id that is found in the first column, while the second if the
taxon_id.

The third option is a serialised Python dict/hash table, whose keys are the
gene_id and the value is that gene corresponding taxon_id. The serialised
formats accepted are msgpack, json and pickle. The msgpack module must be
importable. The option to use json and msgpack allow to integrate this script
with other languages without resorting to a text file.

The last option is a HDF5 created using the to_hdf command in
taxon-utils - Taxonomy Utilities. This requires pandas installed and pytables and it
provides faster lookup of IDs in the table.

While the default is to look for the gene_id attribute in the GFF annotation,
another attribute can be specified, using the -gene-attr option.

Note

the dictionary content is loaded after the table files and its keys and
corresponding values takes precedence over the text files.

Warning

from September 2016 NCBI will retire the GI. In that case the same
kind of table can be built from the nucl_gb.accession2taxid.gz file
The format is different, but some information can be found in
mgkit.io.blast.parse_accession_taxa_table()

Adding information from Pfam

Adds the Pfam description for the annotation, by downloading the list from
Pfam.

The options allow to specify in which attribute the ID/ACCESSION is stored
(defaults to gene_id) and which one between ID/ACCESSION is the value of that
attribute (defaults to ID). if no description is found for the family, a
warning message is logged.

Changes

Changed in version 0.3.4: removed the taxonomy command, since a similar result can be obtained with
taxon-utils lca and add-gff-info addtaxa. Removed eggnog command and
added option to verbose the logging in cov_samtools (now is quiet), also
changed the interface

Changed in version 0.3.3: changed how addtaxa -a works, to allow the use of seq_id as key to
add the taxon_id

Changed in version 0.3.0: added cov_samtools command, –split option to exp_syn, -c option to
addtaxa. kegg now does not skip annotations when the attribute is not
found.

Changed in version 0.2.6: added skip-no-taxon option to addtaxa

Changed in version 0.2.5: if a dictionary is supplied to addtaxa, the GFF is not preloaded

Changed in version 0.2.3: added pfam command, renamed gitaxa to addtaxa and made it general

Changed in version 0.2.2: added eggnog, gitaxa and counts command

Changed in version 0.2.1.

	added -d to uniprot command

	added cache to uniprot command

	added kegg command (cached)

Changed in version 0.1.16: added exp_syn command

Changed in version 0.1.15: taxonomy command -b option changed

Changed in version 0.1.13.

	added –force-taxon-id option to the uniprot command

	added coverage command

	added taxonomy command

	added unipfile command

New in version 0.1.12.

	
mgkit.workflow.add_gff_info.add_uniprot_info(annotations, email, force_taxon_id, taxon_id, lineage, eggnog, enzymes, kegg_orthologs, protein_names, mapping, info_cache)

	

	
mgkit.workflow.add_gff_info.load_featurecounts_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.load_htseq_count_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.parse_hdf5_arg(ctx, param, values)

	

	
mgkit.workflow.add_gff_info.split_sample_alg(ctx, param, values)

	Split sample/alignment option

 mgkit.workflow.blast2gff module

mgkit.workflow.blast2gff module

Blast output conversion in GFF requires a BLAST+ tabular format which can be
obtained by using the –outfmt 6 option with the default columns, as
specified in mgkit.io.blast.parse_blast_tab(). The script can get data
from the standard in and ouputs GFF lines on the standard output by default.

Uniprot

The Function mgkit.io.blast.parse_uniprot_blast() is used, which filters
BLAST hits based on bitscore and adds by default a db attribute to the
annotation with the value UNIPROT-SP, indicating that the SwissProt db is
used and a dbq attribute with the value 10. The feature type used in the GFF
is CDS.

 blockdiag

 BLAST+

 parse_uniprot_blast

 GFF

BlastDB

If a BlastDB, such as nt or nr was used, the blastdb command offers
some quick defaults to parse BLAST results.

It now includes options to control the way the sequence header are formatted.
Options to change the separator used, as well as the column used as gene_id.
This was added because at the moment the GI identifier (the second column in
the header) is used, but it’s being phased out in favour of the embl/gb/dbj
(right now the fourth column in the header). This should easy the transition to
the new format and makes it easier to adapt an older pipeline/blastdb to newer
files (like the ID to TAXA files).

The header from the a ncbi-nt header looks like this:

gi|160361034|gb|CP000884.1

This is the default output accepted by the blastdb command. The fields are
separated by | (pipe) and the GI is used (–gene-index 1, since internally
the string is split by the separator and the second element is take - lists
indices are 0-based in Python). This output uses the following options:

--header-sep '|' --gene-index 1

Notice the single quotes to pass the pipe symbol, since bash would interpret
it as pipeing to the next coommand otherwise. This is the default.

In case, for the same header, we want to use the gb identifier, the only
option to be specified is:

--gene-index 3

This will get the fourth element of the header (since we’re splitting by pipe).

As in the uniprot command, the gene_id can be set to use the whole header,
using the -n option. Useful in case the BLAST db that was used was custom
made. While pipe is used in major databases, it was made the default, by if the
db used has different conventions the separator can be changed. There’s also
the options of later changing the gene_id in the output GFF if necessary.

Changes

Changed in version 0.3.4: using click instead of argparse

Changed in version 0.2.6: added -r option to blastdb

Changed in version 0.2.5: added more options to give user control to the blastdb command

New in version 0.2.3: added –fasta-file option, added more data from a blsat hit

New in version 0.2.2: added blastdb command

Changed in version 0.2.1: added -ft option

Changed in version 0.1.13: added -n and -k parameters to uniprot command

New in version 0.1.12.

	
mgkit.workflow.blast2gff.load_fasta_file(file_name)

	

	
mgkit.workflow.blast2gff.validate_params(ctx, param, values)

	

 mgkit.workflow.extract_gff_info module

mgkit.workflow.extract_gff_info module

Extract information from GFF files

sequence command

Used to extract the nucleotidic sequences from GFF annotations. It requires the
fasta file containing the sequences referenced in the GFF seq_id attribute
(first column of the raw GFF).

The sequnces extract have as identifier the uid stored in the GFF file and by
default the sequnece is not reverse complemented if the annotation is on the
- strand, but this can be changed by using the -r option.

The sequences are wrapped at 60 characters, as per FASTA specs, but this
behavior can be disabled by specifing the -w option.

Warning

The reference file is loaded in memory

dbm command

Creates a dbm DB using the semidbm package. The database can then be loaded
using mgkit.db.dbm.GFFDB

mongodb command

Outputs annotations in a format supported by MongoDB. More information about it
can be found in mgkit.db.mongo

gtf command

Outputs annotations in the GTF format

split command

Splits a GFF file into smaller chunks, ensuring that all of a sequence
annotations are in the same file.

cov command

Calculate annotation coverage for each contig in a GFF file. The command can be
run as strand specific (not by default) and requires the reference file to
which the annotation refer to. The output file is a tab separated one, with the
first column being the sequence name, the second is the strand (+, -, or NA if
not strand specific) and the third is the percentage of the sequence covered by
annotations.

Warning

The GFF file is assumed to be sorted, by sequence or sequence-strand if
wanted. The GFF file can be sorted using sort -s -k 1,1 -k 7,7 for strand
specific, or sort -s -k 1,1 if not strand specific.

Changes

Changed in version 0.3.4: using click instead of argparse, renamed split command –json to
–json-out

Changed in version 0.3.1: added cov command

Changed in version 0.3.0: added –split option to sequence command

Changed in version 0.2.6: added split command, –indent option to mongodb

Changed in version 0.2.3: added –gene-id option to gtf command

New in version 0.2.2: added gtf command

New in version 0.2.1: dbm and mongodb commands

New in version 0.1.15.

 mgkit.workflow.fasta_utils module

mgkit.workflow.fasta_utils module

New in version 0.3.0.

Scripts that includes some functionality to help use FASTA files with the
framework

split command

Used to split a fasta file into smaller fragments

translate command

Used to translate nucleotide sequences into amino acids.

uid command

Used to change a FASTA file headers to a unique ID. A table (tab separated)
with the changes made can be kept, using the –table option.

Changes

New in version 0.3.0.

Changed in version 0.3.1: added translate and uid command

Changed in version 0.3.4: ported to click

	
mgkit.workflow.fasta_utils.load_trans_table(table_name)

	Loads translation table

	
mgkit.workflow.fasta_utils.translate_seq(name, seq, trans_table)

	Tranlates sequence into the 6 frames

 mgkit.workflow.fastq_utils module

mgkit.workflow.fastq_utils module

Commands

	Interleave/deinterleave paired-end fastq files.

	Converts to FASTA

	sort 2 files to sync the headers

Changes

Changed in version 0.3.4: moved to use click, internal fastq parsing, removed rand command

Changed in version 0.3.1: added stdin/stdout defaults for some commands

Changed in version 0.3.0: added convert command to FASTA

	
mgkit.workflow.fastq_utils.report_counts(count, wcount, counter=None)

	Logs the status

 mgkit.workflow.filter_gff module

mgkit.workflow.filter_gff module

Filters GFF annotations in different ways.

Value Filtering

Enables filtering of GFF annotations based on the the values of attributes of a
GFF annotation. The filters are based on equality of numbers (internally
converted into float) and strings, a string contained in the value of an attribute
less or greater than are included as well. The length of annotation has the
attribute length and can be tested.

Overlap Filtering

Filters overlapping annotations using the functions
mgkit.filter.gff.choose_annotation() and
mgkit.filter.gff.filter_annotations(), after the annotations are grouped
by both sequence and strand. If the GFF is sorted by sequence name and strand,
the -t can be used to make the filtering use less memory. It can be sorted in
Unix using sort -s -k 1,1 -k 7,7 gff_file, which applies a stable sort using
the sequence name as the first key and the strand as the second key.

Note

It is also recommended to use:

export LC_ALL=C

To speed up the sorting

 blockdiag

 sort

 group_annotations

 GFF

 parse_gff

 filter_annotati
 ons

 Filtered Annotations

The above digram describes the internals of the script.

The annotations needs first to be grouped by seq_id and strand, forming a group
that can be then be passed to mgkit.filter.gff.filter_annotations().
This function:

	sort annotations by bit score, from the highest to the lowest

	loop over all combination of N=2 annotations:

	choose which of the two annotations to discard if they overlap for a
the required amount of bp (defaults to 100bp)

	in which case, the preference is given to the db quality first, than
the bit score and finally the lenght of annotation, the one with the
highest values is kept

While the default behaviour is the same, now it is posible to decided the
function used to discard one the two annotations. It is possible to use the
-c argument to pass a string that defines the function. The string passed must
start with or without a +. Using + translates into the builtin function
max while no + translates into min from the second character on, any
number of attributes can be used, separated by commas. The attributes, however,
must be one of the properties defined in mgkit.io.gff.Annotation,
bitscore that returns the value converted in a float. Internally the
attributes are stored as strings, so for attributes that have no properties in
the class, such as evalue, the float builtin is applied.

The tuples built for both annotations are then passed to the comparison
function to be selected and the value returned by it is discarded. The
order of the elements in the string is important to define the priority
given to each element in the comparison and the leftmost one has the
highesst priority.

Examples of function strings:

	-dbq,bitscore,length becomes max((ann1.dbq, ann1.bitscore, ann1.length),
(ann2.dbq, ann2.bitscore, ann2.length) - This is default and previously
only choice

	-bitscore,length,dbq uses the same elements but gives lowest priority
to dbq

	+evalue: will discard the annotation with the highest evalue

Per Sequence Values

The sequence command allows to filter on a per sequence basis, using
functions such as the median, quantile and mean on attributes like evalue,
bitscore and identity. The file can be passed as sorted already, saving memory
(like in the overlap command), but it’s not needed to sort the file by strand,
only by the first column.

Coverage Filtering

The cov command calculates the coverage of annotations as a measure of the
percentage of each reference sequence length. A minimum coverage percentage can
be used to keep the annotations of sequences that have a greater or equal
coverage than the specified one.

Changes

New in version 0.1.12.

Changed in version 0.1.13: added –sorted option

Changed in version 0.2.0: changed option -c to accept a string to filter overlap

Changed in version 0.2.5: added sequence command

Changed in version 0.2.6: added length as attribute and min/max, and ge is the default
comparison for command sequence, –sort-attr to overlap

Changed in version 0.3.1: added –num-gt and –num-lt to values command, added cov command

Changed in version 0.3.4: moved to use click for argument parsing reworked the values, sequence
commands

	
mgkit.workflow.filter_gff.filter_eq(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_gt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.filter_in(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_lt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.find_comparison(comparison)

	

	
mgkit.workflow.filter_gff.make_choose_func(values)

	Builds the function used to choose between two annotations.

	
mgkit.workflow.filter_gff.perseq_calc_threshold(annotations, attribute, function, func_arg=None)

	

	
mgkit.workflow.filter_gff.setup_filters(str_eq, str_in, num_eq, num_ge, num_le, num_gt, num_lt)

	

	
mgkit.workflow.filter_gff.validate_params(ctx, param, values, convert=<type 'str'>)

	

 mgkit.workflow.hmmer2gff module

mgkit.workflow.hmmer2gff module

Script to convert HMMER results files (domain table) to a GFF file, the name of
the profiles are expected to be now in the form
GENEID_TAXONID_TAXON-NAME(-nr) by default, but any other profile name is
accepted.

The profiles tested are those made from Kegg Orthologs, from the
download_profiles script. If the –no-custom-profiles options is used,
the script can be used with any profile name. The profile name will be used
for gene_id, taxon_id and taxon_name in the GFF file.

It is possible to use seuqnces not translated using mgkit, no information on
the frame is assumed, so this script can be used against a protein DB. For
example Uniprot can be searched for profiles, in which case the –no-frame
options must be used.

Note

for GENEID, old documentation points to KOID, it is the same

Warning

The compatibility with old data has been removed, meaning that old
experiments must use the scripts from those versions. It is possible to use
multiple environments, with virtualenv for this purpose. An examples is
given in Installation.

Changes

Changed in version 0.1.15: adapted to new GFF module and specs

Changed in version 0.2.1: added options to customise output and filters and old restrictions

Changed in version 0.3.1: added –no-frame option for non mgkit-translated proteins, sequence
headers are handled the same way as HMMER (truncated at the first space)

	
mgkit.workflow.hmmer2gff.get_aa_data(f_handle)

	Load aminoacid seuqnces used by HMMER.

	
mgkit.workflow.hmmer2gff.main()

	Main loop

	
mgkit.workflow.hmmer2gff.parse_domain_table_contigs(options)

	Parse the HMMER result file

	
mgkit.workflow.hmmer2gff.set_parser()

	Setup command line options

 mgkit.workflow.json2gff module

mgkit.workflow.json2gff module

Changed in version 0.3.4: using click instead of argparse

New in version 0.2.6.

This script converts annotations in JSON format that were created using MGKit
back into GFF annotations.

mongodb command

Annotations converted into MongoDB records with get-gff-info mongodb can be
converted back into a GFF file using this command. It can be useful to get a
GFF file as output from a query to a MongoDB instance on the command line.

For example:

mongoexport -d db -c test | json2gff mongodb

will convert all the annotations in the database db, collection test to
the standard out.

 mgkit.workflow.sampling_utils module

mgkit.workflow.sampling_utils module

New in version 0.3.1.

Resampling Utilities

sample command

This command samples from a Fasta or FastQ file, based on a probability defined
by the user (0.001 or 1 / 1000 by default, -r parameter), for a maximum number
of sequences (100,000 by default, -x parameter). By default 1 sample is
extracted, but as many as desired can be taken, by using the -n parameter.

The sequence file in input can be either be passed to the standard input or as
last parameter on the command line. By defult a Fasta is expected, unless the
-q parameter is passed.

The -p parameter specifies the prefix to be used, and if the output files can
be gzipped using the -z parameter.

sample_stream command

It works in the same way as sample, however the file is sampled only once and
the output is the stdout by default. This can be convenient if streams are a
preferred way to sample the file.

sync command

Used to keep in sync forward and reverse read files in paired-end FASTQ.
The scenario is that the sample command was used to resample a FASTQ file,
usually the forward, but we need the reverse as well. In this case, the resampled
file, called master is passed to the -m option and the input file is
the file that is to be synced (reverse). The input file is scanned until the same header is
found in the master file and when that happens, the sequence is written. The
next sequence is then read from the master file and the process is repeated until all
sequence in the master file are found in the input file. This implies having
the 2 files sorted in the same way, which is what the sample command does.

Note

the old casava format is not supported by this command at the moment, as
it’s unusual to find it in SRA or other repositories as well.

rand_seq command

Generate random FastA/Q sequences, allowing the specification of GC content and
number of sequences being coding or random. If the output format chosen is
FastQ, qualities are generated using a decreasing model with added noise. A
constant model can be specified instead with a switch. Parameters such GC,
length and the type of model can be infered by passing a FastA/Q file, with
the quality model fit using a LOWESS (using mgkit.utils.sequence.extrapolate_model()).
The noise in that case is model as the a normal distribution fitted from the
qualities along the sequence deviating from the fitted LOWSS and scaled back by
half to avoid too drastic changes in the qualities. Also the qualities are
clipped at 40 to avoid compatibility problems with FastQ readers. If inferred,
the model can be saved (as a pickle file) and loaded back for analysis

Changes

Changed in version 0.3.4: using click instead of argparse. Now *rand_seq can save and reload models

Changed in version 0.3.3: added sync, sample_stream and rand_seq commnads

	
mgkit.workflow.sampling_utils.compare_header(header1, header2, header_type=None)

	

	
mgkit.workflow.sampling_utils.infer_parameters(file_handle, fastq_bool, progress)

	

 mgkit.workflow.snp_parser module

mgkit.workflow.snp_parser module

This script parses results of SNPs analysis from any tool for SNP calling 1
and integrates them into a format that can be later used for other scripts in
the pipeline.

It integrates coverage and expected number of syn/nonsyn change and taxonomy
from a GFF file, SNP data from a VCF file.

Note

The script accept gzipped VCF files

	1

	GATK pipeline was tested, but it is possible to use samtools and
bcftools

Changes

Changed in version 0.2.1: added -s option for VCF files generated using bcftools

Changed in version 0.1.16: reworkked internals and removed SNPDat, syn/nonsyn evaluation is internal

Changed in version 0.1.13: reworked the internals and the classes used, including options -m and -s

	
mgkit.workflow.snp_parser.check_snp_in_set(samples, snp_data, pos, change, annotations, seq)

	Used by parse_vcf() to check if a SNP

	Parameters

	
	samples (iterable) – list of samples that contain the SNP

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.init_count_set(annotations)

	

	
mgkit.workflow.snp_parser.main()

	Main function

	
mgkit.workflow.snp_parser.parse_vcf(vcf_file, snp_data, min_reads, min_af, min_qual, annotations, seqs, options, line_num=100000)

	Parse VCF file counts synonymous and non-synonymous SNPs

	Parameters

	
	vcf_file (file) – file handle to a VCF file

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	min_reads (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of reads to accept a SNP

	min_af (float [https://docs.python.org/3/library/functions.html#float]) – minimum allele frequency to accept a SNP

	min_qual (int [https://docs.python.org/3/library/functions.html#int]) – minimum quality (Phred score) to accept a SNP

	annotations (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – annotations grouped by their reference sequence

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – reference sequences

	line_num (int [https://docs.python.org/3/library/functions.html#int]) – the interval in number of lines at which progress
will be printed

	
mgkit.workflow.snp_parser.save_data(output_file, snp_data)

	Pickle data structures to the disk.

	Parameters

	
	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – base name for pickle files

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.set_parser()

	Sets command line arguments parser

 mgkit.workflow.taxon_utils module

mgkit.workflow.taxon_utils module

The script contains commands used to access functionality related to
taxonomy, without the need to write ad-hoc code for functionality that
can be part of a workflow. One example is access to the the last common
ancestor function contained in the mgkit.taxon.

Last Common Ancestor (lca and lca_line)

These commands expose the functionality of
last_common_ancestor_multiple(), making it accessible via the command
line. They differ in the input file format and the choice of output files.

the lca command can be used to define the last common ancestor of contigs
from the annotation in a GFF file. The command uses the taxon_ids from all
annotations belonging to a contig/sequence, if they have a bitscore higher
or equal to the one passed (50 by default). The default output of the command
is a tab separated file where the first column is the contig/sequence name,
the taxon_id of the last common ancestor, its scientific/common name and its
lineage.

For example:

contig_21 172788 uncultured phototrophic eukaryote cellular organisms,environmental samples

If the -r is used, by passing the fasta file containing the nucleotide
sequences the output file is a GFF where for each an annotation for the full
contig length contains the same information of the tab separated file format.

The lca_line command accept as input a file where each line consist of a
list of taxon_ids. The separator for the list can be changed and it defaults to
TAB. The last common ancestor for all taxa on a line is searched. The ouput of
this command is the same as the tab separated file of the lca command, with
the difference that instead of the first column, which in this command becames
a list of all taxon_ids that were used to find the last common ancestor for
that line. The list of taxon_ids is separated by semicolon “;”.

Note

Both also accept the -n option, to report the config/line and the
taxon_ids that had no common ancestors. These are treated as errors and do
not appear in the output file.

Krona Output

New in version 0.3.0.

The lca command supports the writing of a file compatible with Krona. The
output file can be used with the ktImportText/ImportText.pl script included
with KronaTools [https://github.com/marbl/Krona/wiki]. Specifically, the
output from taxon_utils will be a file with all the lineages found (tab
separated), that can be used with:

$ ktImportText -q taxon_utils_ouput

Note the use of -q to make the script count the lineages. Sequences with no
LCA found will be marked as No LCA in the graph, the -n is not required.

Note

Please note that the output won’t include any sequence that didn’t have a
hit with the software used. If that’s important, the -kt option can be
used to add a number of Unknown lines at the end, to read the total
supplied.

Filter by Taxon

The filter command of this script allows to filter a GFF file using the
taxon_id attribute to include only some annotations, or exclude some. The
filter is based on the mgkit.taxon.is_ancestor function, and the
mgkit.filter.taxon.filter_taxon_by_id_list. It can also filter a table (tab
separated values) when the first element is an ID and the second is a taxon_id.
An example of a table of this sort is the output of the download-ncbi-taxa.sh
and download-uniprot-taxa.sh, where each accession of a database is associated
to a taxon_id.

Multiple taxon_id can be passed, either for inclusion or exclusion. If both
exclusion and inclusion is used, the first check is on the inclusion and then on
the exclusion. In alternative to passing taxon_id, taxon_names can be passed,
with values such as ‘cellular organisms’ that needs to be quoted. Example:

$ taxon-utils filter -i 2 -in archaea -en prevotella -t taxonomy.pickle in.gff out.gff

Which will keep only line that are from Bacteria (taxon_id=2) and exclude those
from the genus Prevotella. It will be also include Archaea.

Multiple inclusion and exclusion flags can be put:

$ taxon-utils filter -i 2 -i 2172 -t taxonomy in.gff out.gff

In particular, the inclusion flag is tested first and then the exclusion is
tested. So a line like this one:

printf "TEST\t838\nTEST\t1485" | taxon-utils filter -p -t taxonomy.pickle -i 2 -i 1485 -e 838

Will produce TEST 1485, because both Prevotella (838) and Clostridium (1485)
are Bacteria (2) OR Prevotella, but Prevotella must be excluded according to
the exclusion option. This line also illustrate that a tab-separated file, where
the second column contains taxon IDs, can be filtered. In particular it can be
applied to files produced by download-ncbi-taxa.sh or
download-uniprot-taxa.sh (see Download Taxonomy).

Warning

Annotations with no taxon_id are not included in the output of both filters

Convert Taxa Tables to HDF5

This command is used to convert the taxa tables download from Uniprot and NCBI,
using the scripts mentioned in download-data,
download-uniprot-taxa.sh and download-ncbi-taxa into a HDF5 file that can
be used with the addtaxa command in add-gff-info - Add informations to GFF annotations.

The advantage is a faster lookup of the IDs. The other is a smaller memory
footprint when a great number of annotations are kept in memory.

Changes

Changed in version 0.3.4: changed interface and behaviour for filter, also now can filter tables;
lca has changed the interface and allows the output of a 2 column table

Changed in version 0.3.1: added to_hdf command

Changed in version 0.3.1: added -j option to lca, which outputs a JSON file with the LCA results

Changed in version 0.3.0: added -k and -kt options for Krona output, lineage now includes the LCA
also added -a option to select between lineages with only ranked taxa.
Now it defaults to all components.

Changed in version 0.2.6: added feat-type option to lca command, added phylum output to nolca

New in version 0.2.5.

	
mgkit.workflow.taxon_utils.get_taxon_info(taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.validate_taxon_ids(taxon_ids, taxonomy)

	

	
mgkit.workflow.taxon_utils.validate_taxon_names(taxon_names, taxonomy)

	

	
mgkit.workflow.taxon_utils.write_json(lca_dict, seq_id, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_krona(file_handle, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_lca_gff(file_handle, seq_id, seq, taxon_id, taxon_name, lineage, feat_type)

	

	
mgkit.workflow.taxon_utils.write_lca_tab(file_handle, seq_id, taxon_id, taxon_name, rank, lineage)

	

	
mgkit.workflow.taxon_utils.write_lca_tab_simple(file_handle, seq_id, taxon_id)

	

	
mgkit.workflow.taxon_utils.write_no_lca(file_handle, seq_id, taxon_ids, extra=None)

	

 mgkit.workflow.utils module

mgkit.workflow.utils module

Utility functions for workflows

	
class mgkit.workflow.utils.CiteAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show citation for the framework')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Argparse action to print the citation, using the mgkit.cite()
function.

	
class mgkit.workflow.utils.PrintManAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show the script manual', manual='')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

New in version 0.2.6.

Argparse action to print the manual

	
mgkit.workflow.utils.add_basic_options(parser, manual='')

	
Changed in version 0.2.6: added quiet option

Adds verbose and version options to the option parser

	
mgkit.workflow.utils.cite_callback(ctx, param, value)

	

	
mgkit.workflow.utils.exit_script(message, ret_value)

	Used to exit the script with a return value

 mgkit.workflow.add_gff_info module

mgkit.workflow.add_gff_info module

Add more information to GFF annotations: gene mappings, coverage, taxonomy,
etc..

Uniprot Command

If the gene_id of an annotation is a Uniprot ID, the script queries Uniprot
for the requested information. At the moment the information that can be added
is the taxon_id, taxon_name, lineage and mapping to EC, KO, eggNOG IDs.

It’s also possible to add mappings to other databases using the -m option
with the correct identifier for the mapping, which can be found at this page [http://www.uniprot.org/faq/28]; for example if it’s we want to add the
mappings of uniprot IDs to BioCyc, in the abbreviation column of the
mappings we find that it’s identifier is REACTOME_ID, so we pass
-m REACTOME to the script (leaving _ID out). Mapped IDs are separated by
commas.

The taxonomy IDs are not overwritten if they are found in the annotations, the
-f is provided to force the overwriting of those values.

See also MGKit GFF Specifications for more informations about the GFF specifications
used.

Note

As the script needs to query Uniprot a lot, it is recommended to split
the GFF in several files, so an error in the connection doesn’t waste time.

However, a cache is kept to reduce the number of connections

Coverage Command

Adds coverage information from BAM alignment files to a GFF file, using the
function mgkit.align.add_coverage_info(), the user needs to supply for
each sample a BAM file, using the -a option, whose parameter is in the form
sample,samplealg.bam. More samples can be supplied adding more -a
arguments.

Hint

As an example, to add coverage for sample1, sample2 the command line
is:

add-gff-info coverage -a sample1,sample1.bam -a sample2,sample2.bam \
inputgff outputgff

A total coverage for the annotation is also calculated and stored in the
cov attribute, while each sample coverage is stored into sample_cov as per
MGKit GFF Specifications.

Adding Coverage from samtools depth

The cov_samtools allows the use of the output of samtools depth
command. The -aa options must be used to pass information about all base
pairs and sequences coverage in the BAM/SAM file. The command work similarly to
coverage, accepting compressed depth files as well. If only one depth
file is passed and no sample is passed, the attribute in the GFF will be cov,
otherwise the attribute will be sample1_cov, sample2_cov, etc.

To create samtools depth files, this command must be used:

$ samtools depth -aa bam_file

Uniprot Offline Mappings

Similar to the uniprot command, it uses the idmapping [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz]
file provided by Uniprot, which speeds up the process of adding mappings and
taxonomy IDs from Uniprot gene IDs. It’s not possible tough to add EC
mappings with this command, as those are not included in the file.

Kegg Information

The kegg command allows to add information to each annotation. Right now the
information that can be added is restricted to the pathway(s) (reference KO) a
KO is part of and both the KO and pathway(s) descriptions. This information is
stored in keys starting with ko_.

Expected Aminoacidic Changes

Some scripts, like snp_parser - SNPs analysis, require information about the expected
number of synonymous and non-synonymous changes of an annotation. This can be
done using mgkit.io.gff.Annotation.add_exp_syn_count() by the user of the
command exp_syn of this script. The attributes added to each annotation are
explained in the MGKit GFF Specifications

Adding Count Data

Count data on a per-sample basis can be added with the counts command. The
accepted inputs are from HTSeq-count and featureCounts. The ouput produced by
featureCounts, is the one from using its -f option must be used.

This script accept by default a tab separated file, with a uid in the first
column and the other columns are the counts for each sample, in the same order
as they are passed to the -s option. To use the featureCounts file format,
this script -e option must be used.

The sample names must be provided in the same order as the columns in the input
files. If the counts are FPKMS the -f option can be used.

Adding Taxonomy from a Table

There are cases where it may needed or preferred to add the taxonomy from a
gene_id already provided in the GFF file. For such cases the addtaxa
command can be used. It works in a similar way to the taxonomy command, only
it expect three different type of inputs:

	GI-Taxa table from NCBI (e.g. gi_taxid_nucl.dmp,)

	tab separated table

	dictionary

	HDF5

The first two are tab separated files, where on each line, the first column is
the gene_id that is found in the first column, while the second if the
taxon_id.

The third option is a serialised Python dict/hash table, whose keys are the
gene_id and the value is that gene corresponding taxon_id. The serialised
formats accepted are msgpack, json and pickle. The msgpack module must be
importable. The option to use json and msgpack allow to integrate this script
with other languages without resorting to a text file.

The last option is a HDF5 created using the to_hdf command in
taxon-utils - Taxonomy Utilities. This requires pandas installed and pytables and it
provides faster lookup of IDs in the table.

While the default is to look for the gene_id attribute in the GFF annotation,
another attribute can be specified, using the -gene-attr option.

Note

the dictionary content is loaded after the table files and its keys and
corresponding values takes precedence over the text files.

Warning

from September 2016 NCBI will retire the GI. In that case the same
kind of table can be built from the nucl_gb.accession2taxid.gz file
The format is different, but some information can be found in
mgkit.io.blast.parse_accession_taxa_table()

Adding information from Pfam

Adds the Pfam description for the annotation, by downloading the list from
Pfam.

The options allow to specify in which attribute the ID/ACCESSION is stored
(defaults to gene_id) and which one between ID/ACCESSION is the value of that
attribute (defaults to ID). if no description is found for the family, a
warning message is logged.

Changes

Changed in version 0.3.4: removed the taxonomy command, since a similar result can be obtained with
taxon-utils lca and add-gff-info addtaxa. Removed eggnog command and
added option to verbose the logging in cov_samtools (now is quiet), also
changed the interface

Changed in version 0.3.3: changed how addtaxa -a works, to allow the use of seq_id as key to
add the taxon_id

Changed in version 0.3.0: added cov_samtools command, –split option to exp_syn, -c option to
addtaxa. kegg now does not skip annotations when the attribute is not
found.

Changed in version 0.2.6: added skip-no-taxon option to addtaxa

Changed in version 0.2.5: if a dictionary is supplied to addtaxa, the GFF is not preloaded

Changed in version 0.2.3: added pfam command, renamed gitaxa to addtaxa and made it general

Changed in version 0.2.2: added eggnog, gitaxa and counts command

Changed in version 0.2.1.

	added -d to uniprot command

	added cache to uniprot command

	added kegg command (cached)

Changed in version 0.1.16: added exp_syn command

Changed in version 0.1.15: taxonomy command -b option changed

Changed in version 0.1.13.

	added –force-taxon-id option to the uniprot command

	added coverage command

	added taxonomy command

	added unipfile command

New in version 0.1.12.

	
mgkit.workflow.add_gff_info.add_uniprot_info(annotations, email, force_taxon_id, taxon_id, lineage, eggnog, enzymes, kegg_orthologs, protein_names, mapping, info_cache)

	

	
mgkit.workflow.add_gff_info.load_featurecounts_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.load_htseq_count_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.parse_hdf5_arg(ctx, param, values)

	

	
mgkit.workflow.add_gff_info.split_sample_alg(ctx, param, values)

	Split sample/alignment option

 mgkit.workflow.blast2gff module

mgkit.workflow.blast2gff module

Blast output conversion in GFF requires a BLAST+ tabular format which can be
obtained by using the –outfmt 6 option with the default columns, as
specified in mgkit.io.blast.parse_blast_tab(). The script can get data
from the standard in and ouputs GFF lines on the standard output by default.

Uniprot

The Function mgkit.io.blast.parse_uniprot_blast() is used, which filters
BLAST hits based on bitscore and adds by default a db attribute to the
annotation with the value UNIPROT-SP, indicating that the SwissProt db is
used and a dbq attribute with the value 10. The feature type used in the GFF
is CDS.

 blockdiag

 BLAST+

 parse_uniprot_blast

 GFF

BlastDB

If a BlastDB, such as nt or nr was used, the blastdb command offers
some quick defaults to parse BLAST results.

It now includes options to control the way the sequence header are formatted.
Options to change the separator used, as well as the column used as gene_id.
This was added because at the moment the GI identifier (the second column in
the header) is used, but it’s being phased out in favour of the embl/gb/dbj
(right now the fourth column in the header). This should easy the transition to
the new format and makes it easier to adapt an older pipeline/blastdb to newer
files (like the ID to TAXA files).

The header from the a ncbi-nt header looks like this:

gi|160361034|gb|CP000884.1

This is the default output accepted by the blastdb command. The fields are
separated by | (pipe) and the GI is used (–gene-index 1, since internally
the string is split by the separator and the second element is take - lists
indices are 0-based in Python). This output uses the following options:

--header-sep '|' --gene-index 1

Notice the single quotes to pass the pipe symbol, since bash would interpret
it as pipeing to the next coommand otherwise. This is the default.

In case, for the same header, we want to use the gb identifier, the only
option to be specified is:

--gene-index 3

This will get the fourth element of the header (since we’re splitting by pipe).

As in the uniprot command, the gene_id can be set to use the whole header,
using the -n option. Useful in case the BLAST db that was used was custom
made. While pipe is used in major databases, it was made the default, by if the
db used has different conventions the separator can be changed. There’s also
the options of later changing the gene_id in the output GFF if necessary.

Changes

Changed in version 0.3.4: using click instead of argparse

Changed in version 0.2.6: added -r option to blastdb

Changed in version 0.2.5: added more options to give user control to the blastdb command

New in version 0.2.3: added –fasta-file option, added more data from a blsat hit

New in version 0.2.2: added blastdb command

Changed in version 0.2.1: added -ft option

Changed in version 0.1.13: added -n and -k parameters to uniprot command

New in version 0.1.12.

	
mgkit.workflow.blast2gff.load_fasta_file(file_name)

	

	
mgkit.workflow.blast2gff.validate_params(ctx, param, values)

	

 mgkit.workflow.extract_gff_info module

mgkit.workflow.extract_gff_info module

Extract information from GFF files

sequence command

Used to extract the nucleotidic sequences from GFF annotations. It requires the
fasta file containing the sequences referenced in the GFF seq_id attribute
(first column of the raw GFF).

The sequnces extract have as identifier the uid stored in the GFF file and by
default the sequnece is not reverse complemented if the annotation is on the
- strand, but this can be changed by using the -r option.

The sequences are wrapped at 60 characters, as per FASTA specs, but this
behavior can be disabled by specifing the -w option.

Warning

The reference file is loaded in memory

dbm command

Creates a dbm DB using the semidbm package. The database can then be loaded
using mgkit.db.dbm.GFFDB

mongodb command

Outputs annotations in a format supported by MongoDB. More information about it
can be found in mgkit.db.mongo

gtf command

Outputs annotations in the GTF format

split command

Splits a GFF file into smaller chunks, ensuring that all of a sequence
annotations are in the same file.

cov command

Calculate annotation coverage for each contig in a GFF file. The command can be
run as strand specific (not by default) and requires the reference file to
which the annotation refer to. The output file is a tab separated one, with the
first column being the sequence name, the second is the strand (+, -, or NA if
not strand specific) and the third is the percentage of the sequence covered by
annotations.

Warning

The GFF file is assumed to be sorted, by sequence or sequence-strand if
wanted. The GFF file can be sorted using sort -s -k 1,1 -k 7,7 for strand
specific, or sort -s -k 1,1 if not strand specific.

Changes

Changed in version 0.3.4: using click instead of argparse, renamed split command –json to
–json-out

Changed in version 0.3.1: added cov command

Changed in version 0.3.0: added –split option to sequence command

Changed in version 0.2.6: added split command, –indent option to mongodb

Changed in version 0.2.3: added –gene-id option to gtf command

New in version 0.2.2: added gtf command

New in version 0.2.1: dbm and mongodb commands

New in version 0.1.15.

 mgkit.workflow.fasta_utils module

mgkit.workflow.fasta_utils module

New in version 0.3.0.

Scripts that includes some functionality to help use FASTA files with the
framework

split command

Used to split a fasta file into smaller fragments

translate command

Used to translate nucleotide sequences into amino acids.

uid command

Used to change a FASTA file headers to a unique ID. A table (tab separated)
with the changes made can be kept, using the –table option.

Changes

New in version 0.3.0.

Changed in version 0.3.1: added translate and uid command

Changed in version 0.3.4: ported to click

	
mgkit.workflow.fasta_utils.load_trans_table(table_name)

	Loads translation table

	
mgkit.workflow.fasta_utils.translate_seq(name, seq, trans_table)

	Tranlates sequence into the 6 frames

 mgkit.workflow.fastq_utils module

mgkit.workflow.fastq_utils module

Commands

	Interleave/deinterleave paired-end fastq files.

	Converts to FASTA

	sort 2 files to sync the headers

Changes

Changed in version 0.3.4: moved to use click, internal fastq parsing, removed rand command

Changed in version 0.3.1: added stdin/stdout defaults for some commands

Changed in version 0.3.0: added convert command to FASTA

	
mgkit.workflow.fastq_utils.report_counts(count, wcount, counter=None)

	Logs the status

 mgkit.workflow.filter_gff module

mgkit.workflow.filter_gff module

Filters GFF annotations in different ways.

Value Filtering

Enables filtering of GFF annotations based on the the values of attributes of a
GFF annotation. The filters are based on equality of numbers (internally
converted into float) and strings, a string contained in the value of an attribute
less or greater than are included as well. The length of annotation has the
attribute length and can be tested.

Overlap Filtering

Filters overlapping annotations using the functions
mgkit.filter.gff.choose_annotation() and
mgkit.filter.gff.filter_annotations(), after the annotations are grouped
by both sequence and strand. If the GFF is sorted by sequence name and strand,
the -t can be used to make the filtering use less memory. It can be sorted in
Unix using sort -s -k 1,1 -k 7,7 gff_file, which applies a stable sort using
the sequence name as the first key and the strand as the second key.

Note

It is also recommended to use:

export LC_ALL=C

To speed up the sorting

 blockdiag

 sort

 group_annotations

 GFF

 parse_gff

 filter_annotati
 ons

 Filtered Annotations

The above digram describes the internals of the script.

The annotations needs first to be grouped by seq_id and strand, forming a group
that can be then be passed to mgkit.filter.gff.filter_annotations().
This function:

	sort annotations by bit score, from the highest to the lowest

	loop over all combination of N=2 annotations:

	choose which of the two annotations to discard if they overlap for a
the required amount of bp (defaults to 100bp)

	in which case, the preference is given to the db quality first, than
the bit score and finally the lenght of annotation, the one with the
highest values is kept

While the default behaviour is the same, now it is posible to decided the
function used to discard one the two annotations. It is possible to use the
-c argument to pass a string that defines the function. The string passed must
start with or without a +. Using + translates into the builtin function
max while no + translates into min from the second character on, any
number of attributes can be used, separated by commas. The attributes, however,
must be one of the properties defined in mgkit.io.gff.Annotation,
bitscore that returns the value converted in a float. Internally the
attributes are stored as strings, so for attributes that have no properties in
the class, such as evalue, the float builtin is applied.

The tuples built for both annotations are then passed to the comparison
function to be selected and the value returned by it is discarded. The
order of the elements in the string is important to define the priority
given to each element in the comparison and the leftmost one has the
highesst priority.

Examples of function strings:

	-dbq,bitscore,length becomes max((ann1.dbq, ann1.bitscore, ann1.length),
(ann2.dbq, ann2.bitscore, ann2.length) - This is default and previously
only choice

	-bitscore,length,dbq uses the same elements but gives lowest priority
to dbq

	+evalue: will discard the annotation with the highest evalue

Per Sequence Values

The sequence command allows to filter on a per sequence basis, using
functions such as the median, quantile and mean on attributes like evalue,
bitscore and identity. The file can be passed as sorted already, saving memory
(like in the overlap command), but it’s not needed to sort the file by strand,
only by the first column.

Coverage Filtering

The cov command calculates the coverage of annotations as a measure of the
percentage of each reference sequence length. A minimum coverage percentage can
be used to keep the annotations of sequences that have a greater or equal
coverage than the specified one.

Changes

New in version 0.1.12.

Changed in version 0.1.13: added –sorted option

Changed in version 0.2.0: changed option -c to accept a string to filter overlap

Changed in version 0.2.5: added sequence command

Changed in version 0.2.6: added length as attribute and min/max, and ge is the default
comparison for command sequence, –sort-attr to overlap

Changed in version 0.3.1: added –num-gt and –num-lt to values command, added cov command

Changed in version 0.3.4: moved to use click for argument parsing reworked the values, sequence
commands

	
mgkit.workflow.filter_gff.filter_eq(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_gt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.filter_in(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_lt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.find_comparison(comparison)

	

	
mgkit.workflow.filter_gff.make_choose_func(values)

	Builds the function used to choose between two annotations.

	
mgkit.workflow.filter_gff.perseq_calc_threshold(annotations, attribute, function, func_arg=None)

	

	
mgkit.workflow.filter_gff.setup_filters(str_eq, str_in, num_eq, num_ge, num_le, num_gt, num_lt)

	

	
mgkit.workflow.filter_gff.validate_params(ctx, param, values, convert=<type 'str'>)

	

 mgkit.workflow.hmmer2gff module

mgkit.workflow.hmmer2gff module

Script to convert HMMER results files (domain table) to a GFF file, the name of
the profiles are expected to be now in the form
GENEID_TAXONID_TAXON-NAME(-nr) by default, but any other profile name is
accepted.

The profiles tested are those made from Kegg Orthologs, from the
download_profiles script. If the –no-custom-profiles options is used,
the script can be used with any profile name. The profile name will be used
for gene_id, taxon_id and taxon_name in the GFF file.

It is possible to use seuqnces not translated using mgkit, no information on
the frame is assumed, so this script can be used against a protein DB. For
example Uniprot can be searched for profiles, in which case the –no-frame
options must be used.

Note

for GENEID, old documentation points to KOID, it is the same

Warning

The compatibility with old data has been removed, meaning that old
experiments must use the scripts from those versions. It is possible to use
multiple environments, with virtualenv for this purpose. An examples is
given in Installation.

Changes

Changed in version 0.1.15: adapted to new GFF module and specs

Changed in version 0.2.1: added options to customise output and filters and old restrictions

Changed in version 0.3.1: added –no-frame option for non mgkit-translated proteins, sequence
headers are handled the same way as HMMER (truncated at the first space)

	
mgkit.workflow.hmmer2gff.get_aa_data(f_handle)

	Load aminoacid seuqnces used by HMMER.

	
mgkit.workflow.hmmer2gff.main()

	Main loop

	
mgkit.workflow.hmmer2gff.parse_domain_table_contigs(options)

	Parse the HMMER result file

	
mgkit.workflow.hmmer2gff.set_parser()

	Setup command line options

 mgkit.workflow.json2gff module

mgkit.workflow.json2gff module

Changed in version 0.3.4: using click instead of argparse

New in version 0.2.6.

This script converts annotations in JSON format that were created using MGKit
back into GFF annotations.

mongodb command

Annotations converted into MongoDB records with get-gff-info mongodb can be
converted back into a GFF file using this command. It can be useful to get a
GFF file as output from a query to a MongoDB instance on the command line.

For example:

mongoexport -d db -c test | json2gff mongodb

will convert all the annotations in the database db, collection test to
the standard out.

 mgkit.workflow.sampling_utils module

mgkit.workflow.sampling_utils module

New in version 0.3.1.

Resampling Utilities

sample command

This command samples from a Fasta or FastQ file, based on a probability defined
by the user (0.001 or 1 / 1000 by default, -r parameter), for a maximum number
of sequences (100,000 by default, -x parameter). By default 1 sample is
extracted, but as many as desired can be taken, by using the -n parameter.

The sequence file in input can be either be passed to the standard input or as
last parameter on the command line. By defult a Fasta is expected, unless the
-q parameter is passed.

The -p parameter specifies the prefix to be used, and if the output files can
be gzipped using the -z parameter.

sample_stream command

It works in the same way as sample, however the file is sampled only once and
the output is the stdout by default. This can be convenient if streams are a
preferred way to sample the file.

sync command

Used to keep in sync forward and reverse read files in paired-end FASTQ.
The scenario is that the sample command was used to resample a FASTQ file,
usually the forward, but we need the reverse as well. In this case, the resampled
file, called master is passed to the -m option and the input file is
the file that is to be synced (reverse). The input file is scanned until the same header is
found in the master file and when that happens, the sequence is written. The
next sequence is then read from the master file and the process is repeated until all
sequence in the master file are found in the input file. This implies having
the 2 files sorted in the same way, which is what the sample command does.

Note

the old casava format is not supported by this command at the moment, as
it’s unusual to find it in SRA or other repositories as well.

rand_seq command

Generate random FastA/Q sequences, allowing the specification of GC content and
number of sequences being coding or random. If the output format chosen is
FastQ, qualities are generated using a decreasing model with added noise. A
constant model can be specified instead with a switch. Parameters such GC,
length and the type of model can be infered by passing a FastA/Q file, with
the quality model fit using a LOWESS (using mgkit.utils.sequence.extrapolate_model()).
The noise in that case is model as the a normal distribution fitted from the
qualities along the sequence deviating from the fitted LOWSS and scaled back by
half to avoid too drastic changes in the qualities. Also the qualities are
clipped at 40 to avoid compatibility problems with FastQ readers. If inferred,
the model can be saved (as a pickle file) and loaded back for analysis

Changes

Changed in version 0.3.4: using click instead of argparse. Now *rand_seq can save and reload models

Changed in version 0.3.3: added sync, sample_stream and rand_seq commnads

	
mgkit.workflow.sampling_utils.compare_header(header1, header2, header_type=None)

	

	
mgkit.workflow.sampling_utils.infer_parameters(file_handle, fastq_bool, progress)

	

 mgkit.workflow.snp_parser module

mgkit.workflow.snp_parser module

This script parses results of SNPs analysis from any tool for SNP calling 1
and integrates them into a format that can be later used for other scripts in
the pipeline.

It integrates coverage and expected number of syn/nonsyn change and taxonomy
from a GFF file, SNP data from a VCF file.

Note

The script accept gzipped VCF files

	1

	GATK pipeline was tested, but it is possible to use samtools and
bcftools

Changes

Changed in version 0.2.1: added -s option for VCF files generated using bcftools

Changed in version 0.1.16: reworkked internals and removed SNPDat, syn/nonsyn evaluation is internal

Changed in version 0.1.13: reworked the internals and the classes used, including options -m and -s

	
mgkit.workflow.snp_parser.check_snp_in_set(samples, snp_data, pos, change, annotations, seq)

	Used by parse_vcf() to check if a SNP

	Parameters

	
	samples (iterable) – list of samples that contain the SNP

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.init_count_set(annotations)

	

	
mgkit.workflow.snp_parser.main()

	Main function

	
mgkit.workflow.snp_parser.parse_vcf(vcf_file, snp_data, min_reads, min_af, min_qual, annotations, seqs, options, line_num=100000)

	Parse VCF file counts synonymous and non-synonymous SNPs

	Parameters

	
	vcf_file (file) – file handle to a VCF file

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	min_reads (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of reads to accept a SNP

	min_af (float [https://docs.python.org/3/library/functions.html#float]) – minimum allele frequency to accept a SNP

	min_qual (int [https://docs.python.org/3/library/functions.html#int]) – minimum quality (Phred score) to accept a SNP

	annotations (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – annotations grouped by their reference sequence

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – reference sequences

	line_num (int [https://docs.python.org/3/library/functions.html#int]) – the interval in number of lines at which progress
will be printed

	
mgkit.workflow.snp_parser.save_data(output_file, snp_data)

	Pickle data structures to the disk.

	Parameters

	
	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – base name for pickle files

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.set_parser()

	Sets command line arguments parser

 mgkit.workflow.taxon_utils module

mgkit.workflow.taxon_utils module

The script contains commands used to access functionality related to
taxonomy, without the need to write ad-hoc code for functionality that
can be part of a workflow. One example is access to the the last common
ancestor function contained in the mgkit.taxon.

Last Common Ancestor (lca and lca_line)

These commands expose the functionality of
last_common_ancestor_multiple(), making it accessible via the command
line. They differ in the input file format and the choice of output files.

the lca command can be used to define the last common ancestor of contigs
from the annotation in a GFF file. The command uses the taxon_ids from all
annotations belonging to a contig/sequence, if they have a bitscore higher
or equal to the one passed (50 by default). The default output of the command
is a tab separated file where the first column is the contig/sequence name,
the taxon_id of the last common ancestor, its scientific/common name and its
lineage.

For example:

contig_21 172788 uncultured phototrophic eukaryote cellular organisms,environmental samples

If the -r is used, by passing the fasta file containing the nucleotide
sequences the output file is a GFF where for each an annotation for the full
contig length contains the same information of the tab separated file format.

The lca_line command accept as input a file where each line consist of a
list of taxon_ids. The separator for the list can be changed and it defaults to
TAB. The last common ancestor for all taxa on a line is searched. The ouput of
this command is the same as the tab separated file of the lca command, with
the difference that instead of the first column, which in this command becames
a list of all taxon_ids that were used to find the last common ancestor for
that line. The list of taxon_ids is separated by semicolon “;”.

Note

Both also accept the -n option, to report the config/line and the
taxon_ids that had no common ancestors. These are treated as errors and do
not appear in the output file.

Krona Output

New in version 0.3.0.

The lca command supports the writing of a file compatible with Krona. The
output file can be used with the ktImportText/ImportText.pl script included
with KronaTools [https://github.com/marbl/Krona/wiki]. Specifically, the
output from taxon_utils will be a file with all the lineages found (tab
separated), that can be used with:

$ ktImportText -q taxon_utils_ouput

Note the use of -q to make the script count the lineages. Sequences with no
LCA found will be marked as No LCA in the graph, the -n is not required.

Note

Please note that the output won’t include any sequence that didn’t have a
hit with the software used. If that’s important, the -kt option can be
used to add a number of Unknown lines at the end, to read the total
supplied.

Filter by Taxon

The filter command of this script allows to filter a GFF file using the
taxon_id attribute to include only some annotations, or exclude some. The
filter is based on the mgkit.taxon.is_ancestor function, and the
mgkit.filter.taxon.filter_taxon_by_id_list. It can also filter a table (tab
separated values) when the first element is an ID and the second is a taxon_id.
An example of a table of this sort is the output of the download-ncbi-taxa.sh
and download-uniprot-taxa.sh, where each accession of a database is associated
to a taxon_id.

Multiple taxon_id can be passed, either for inclusion or exclusion. If both
exclusion and inclusion is used, the first check is on the inclusion and then on
the exclusion. In alternative to passing taxon_id, taxon_names can be passed,
with values such as ‘cellular organisms’ that needs to be quoted. Example:

$ taxon-utils filter -i 2 -in archaea -en prevotella -t taxonomy.pickle in.gff out.gff

Which will keep only line that are from Bacteria (taxon_id=2) and exclude those
from the genus Prevotella. It will be also include Archaea.

Multiple inclusion and exclusion flags can be put:

$ taxon-utils filter -i 2 -i 2172 -t taxonomy in.gff out.gff

In particular, the inclusion flag is tested first and then the exclusion is
tested. So a line like this one:

printf "TEST\t838\nTEST\t1485" | taxon-utils filter -p -t taxonomy.pickle -i 2 -i 1485 -e 838

Will produce TEST 1485, because both Prevotella (838) and Clostridium (1485)
are Bacteria (2) OR Prevotella, but Prevotella must be excluded according to
the exclusion option. This line also illustrate that a tab-separated file, where
the second column contains taxon IDs, can be filtered. In particular it can be
applied to files produced by download-ncbi-taxa.sh or
download-uniprot-taxa.sh (see Download Taxonomy).

Warning

Annotations with no taxon_id are not included in the output of both filters

Convert Taxa Tables to HDF5

This command is used to convert the taxa tables download from Uniprot and NCBI,
using the scripts mentioned in download-data,
download-uniprot-taxa.sh and download-ncbi-taxa into a HDF5 file that can
be used with the addtaxa command in add-gff-info - Add informations to GFF annotations.

The advantage is a faster lookup of the IDs. The other is a smaller memory
footprint when a great number of annotations are kept in memory.

Changes

Changed in version 0.3.4: changed interface and behaviour for filter, also now can filter tables;
lca has changed the interface and allows the output of a 2 column table

Changed in version 0.3.1: added to_hdf command

Changed in version 0.3.1: added -j option to lca, which outputs a JSON file with the LCA results

Changed in version 0.3.0: added -k and -kt options for Krona output, lineage now includes the LCA
also added -a option to select between lineages with only ranked taxa.
Now it defaults to all components.

Changed in version 0.2.6: added feat-type option to lca command, added phylum output to nolca

New in version 0.2.5.

	
mgkit.workflow.taxon_utils.get_taxon_info(taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.validate_taxon_ids(taxon_ids, taxonomy)

	

	
mgkit.workflow.taxon_utils.validate_taxon_names(taxon_names, taxonomy)

	

	
mgkit.workflow.taxon_utils.write_json(lca_dict, seq_id, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_krona(file_handle, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_lca_gff(file_handle, seq_id, seq, taxon_id, taxon_name, lineage, feat_type)

	

	
mgkit.workflow.taxon_utils.write_lca_tab(file_handle, seq_id, taxon_id, taxon_name, rank, lineage)

	

	
mgkit.workflow.taxon_utils.write_lca_tab_simple(file_handle, seq_id, taxon_id)

	

	
mgkit.workflow.taxon_utils.write_no_lca(file_handle, seq_id, taxon_ids, extra=None)

	

 mgkit.workflow.utils module

mgkit.workflow.utils module

Utility functions for workflows

	
class mgkit.workflow.utils.CiteAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show citation for the framework')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Argparse action to print the citation, using the mgkit.cite()
function.

	
class mgkit.workflow.utils.PrintManAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show the script manual', manual='')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

New in version 0.2.6.

Argparse action to print the manual

	
mgkit.workflow.utils.add_basic_options(parser, manual='')

	
Changed in version 0.2.6: added quiet option

Adds verbose and version options to the option parser

	
mgkit.workflow.utils.cite_callback(ctx, param, value)

	

	
mgkit.workflow.utils.exit_script(message, ret_value)

	Used to exit the script with a return value

 mgkit

mgkit

	mgkit package
	Subpackages
	mgkit.counts package

	mgkit.db package

	mgkit.filter package

	mgkit.io package

	mgkit.mappings package

	mgkit.net package

	mgkit.plots package

	mgkit.snps package

	mgkit.utils package

	mgkit.workflow package

	Submodules
	mgkit.align module

	mgkit.consts module

	mgkit.graphs module

	mgkit.kegg module

	mgkit.logger module

	mgkit.simple_cache module

	mgkit.taxon module

	Module contents

 mgkit package

mgkit package

Subpackages

	mgkit.counts package
	Submodules
	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

	Module contents

	mgkit.db package
	Submodules
	mgkit.db.dbm module

	mgkit.db.mongo module

	Module contents

	mgkit.filter package
	Submodules
	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

	Module contents

	mgkit.io package
	Submodules
	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

	Module contents

	mgkit.mappings package
	Submodules
	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

	Module contents

	mgkit.net package
	Submodules
	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

	Module contents

	mgkit.plots package
	Submodules
	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

	Module contents

	mgkit.snps package
	Submodules
	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

	Module contents

	mgkit.utils package
	Submodules
	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

	Module contents

	mgkit.workflow package
	Submodules
	mgkit.workflow.add_gff_info module
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	mgkit.workflow.blast2gff module
	Uniprot

	BlastDB

	Changes

	mgkit.workflow.extract_gff_info module
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	mgkit.workflow.fasta_utils module
	split command

	translate command

	uid command

	Changes

	mgkit.workflow.fastq_utils module
	Commands

	Changes

	mgkit.workflow.filter_gff module
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	mgkit.workflow.hmmer2gff module
	Changes

	mgkit.workflow.json2gff module
	mongodb command

	mgkit.workflow.sampling_utils module
	Resampling Utilities
	sample command

	sample_stream command

	sync command

	rand_seq command

	Changes

	mgkit.workflow.snp_parser module
	Changes

	mgkit.workflow.taxon_utils module
	Last Common Ancestor (lca and lca_line)
	Krona Output

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	mgkit.workflow.utils module

	Module contents

Submodules

	mgkit.align module

	mgkit.consts module

	mgkit.graphs module

	mgkit.kegg module

	mgkit.logger module

	mgkit.simple_cache module

	mgkit.taxon module

Module contents

Metagenomics Framework

	
exception mgkit.DependencyError(package)

	Bases: exceptions.Exception

Raised if an optional requirement is needed

	
mgkit.check_version(version)

	

	
mgkit.cite(file_handle=<open file '<stderr>', mode 'w'>)

	Print citation to the specified stream

 mgkit.counts package

mgkit.counts package

Submodules

	mgkit.counts.func module

	mgkit.counts.glm module

	mgkit.counts.scaling module

Module contents

 mgkit.counts.func module

mgkit.counts.func module

New in version 0.1.13.

Misc functions for count data

	
mgkit.counts.func.batch_load_htseq_counts(count_files, samples=None, cut_name=None)

	Loads a list of htseq count result files and returns a DataFrame
(IDxSAMPLE)

The sample names are names are the file names if samples and cut_name
are None, supplying a list of sample names with samples is the
preferred way, and cut_name is used for backward compatibility and as an
option in cases a string replace is enough.

	Parameters

	
	count_files (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	samples (iterable) – list of sample names, in the same order as
count_files

	cut_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to delete from the the file names to get the
sample names

	Returns

	with sample names as columns and gene_ids as index

	Return type

	pandas.DataFrame

	
mgkit.counts.func.filter_counts(counts_iter, info_func, gfilters=None, tfilters=None)

	Returns counts that pass filters for each uid associated gene_id and
taxon_id.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gfilters (iterable) – list of filters to apply to each uid associated
gene_id

	tfilters (iterable) – list of filters to apply to each uid associated
taxon_id

	Yields

	tuple – (uid, count) that pass filters

	
mgkit.counts.func.from_gff(annotations, samples, ann_func=None, sample_func=None)

	
New in version 0.3.1.

Loads count data from a GFF file, only for the requested samples. By
default the function returns a DataFrame where the index is the uid of
each annotation and the columns the requested samples.

This can be customised by supplying ann_func and sample_func.
sample_func is a function that accept a sample name and is expected to
return a string or a tuple. This will be used to change the columns in the
DataFrame. ann_func must accept an mgkit.io.gff.Annotation
instance and return an iterable, with each iteration yielding either a
single element or a tuple (for a MultiIndex DataFrame), each element
yielded will have the count of that annotation added to.

	Parameters

	
	annotation (iterable) – iterable yielding annotations

	samples (iterable) – list of samples to keep

	ann_func (func) – function used to customise the output

	sample_func (func) – function to customise the column elements

	Returns

	dataframe with the count data, columns are the samples and
rows the annotation counts (unless mapped with ann_func)

	Return type

	DataFrame

	Exmples:

	Assuming we have a list of annotations and sample SAMPLE1 and SAMPLE2
we can obtain the count table for all annotations with this

>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'])

Assuming we want to group the samples, for example treatment1,
treatment2 and control1, control2 into a MultiIndex DataFrame column

>>> sample_func = lambda x: ('T' if x.startswith('t') else 'C', x)
>>> from_gff(annotations, ['treatment1', 'treatment2', 'control1',
'control2'], sample_func=sample_func)

Annotations can be mapped to other levels for example instead of using
the uid that is the default, it can be mapped to the gene_id,
taxon_id information that is included in the annotation, resulting in a
MultiIndex index for the rows, with (gene_id, taxon_id) as key.

>>> ann_func = lambda x: [(x.gene_id, x.taxon_id)]
>>> from_gff(annotations, ['SAMPLE1', 'SAMPLE2'], ann_func=ann_func)

	
mgkit.counts.func.get_uid_info(info_dict, uid)

	Simple function to get a value from a dictionary of tuples
(gene_id, taxon_id)

	
mgkit.counts.func.get_uid_info_ann(annotations, uid)

	Simple function to get a value from a dictionary of annotations

	
mgkit.counts.func.load_counts_from_gff(annotations, elem_func=<function <lambda>>, sample_func=None, nozero=True)

	
New in version 0.2.5.

Loads counts for each annotations that are stored into the annotation
counts_ attributes. Annotations with a total of 0 counts are skipped by
default (nozero=True), the row index is set to the uid of the annotation
and the column to the sample name. The functions used to transform the
indices expect the annotation (for the row, elem_func) and the sample
name (for the column, sample_func).

	Parameters

	
	annotations (iter) – iterable of annotations

	elem_func (func) – function that accepts an annotation and return a
str/int for a Index or a tuple for a MultiIndex, defaults to
returning the uid of the annotation

	sample_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function that accepts the sample name and
returns tuple for a MultiIndex. Defaults to None so no
transformation is performed

	nozero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, annotations with no counts are skipped

	
mgkit.counts.func.load_deseq2_results(file_name, taxon_id=None)

	
New in version 0.1.14.

Reads a CSV file output with DESeq2 results, adding a taxon_id to the index
for concatenating multiple results from different taxonomic groups.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name of the CSV

	Returns

	a MultiIndex DataFrame with the results

	Return type

	pandas.DataFrame

	
mgkit.counts.func.load_htseq_counts(file_handle, conv_func=<type 'int'>)

	
Changed in version 0.1.15: added conv_func parameter

Loads an HTSeq-count result file

	Parameters

	
	file_handle (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle or string with file name

	conv_func (func) – function to convert the number from string, defaults
to int, but float can be used as well

	Yields

	tuple – first element is the gene_id and the second is the count

	
mgkit.counts.func.load_sample_counts(info_dict, counts_iter, taxonomy, inc_anc=None, rank=None, gene_map=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
Changed in version 0.1.14: added cached argument

Changed in version 0.1.15: added uid_used parameter

Changed in version 0.2.0: info_dict can be a function

Reads sample counts, filtering and mapping them if requested. It’s an
example of the usage of the above functions.

	Parameters

	
	info_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that has uid as key and
(gene_id, taxon_id) as value. In alternative a function that
accepts a uid as sole argument and returns (gene_id, taxon_id)

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
filtered and mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_genes(info_func, counts_iter, taxonomy, inc_anc=None, gene_map=None, ex_anc=None, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific gene_id. Another difference is the absence of any
assumption on the first parameter. It is expected to return a
(gene_id, taxon_id) tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the gene mappings

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index gene_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.load_sample_counts_to_taxon(info_func, counts_iter, taxonomy, inc_anc=None, rank=None, ex_anc=None, include_higher=True, cached=True, uid_used=None)

	
New in version 0.1.14.

Changed in version 0.1.15: added uid_used parameter

Reads sample counts, filtering and mapping them if requested. It’s a
variation of load_sample_counts(), with the counts being mapped only
to each specific taxon. Another difference is the absence of any assumption
on the first parameter. It is expected to return a (gene_id, taxon_id)
tuple.

	Parameters

	
	info_func (callable) – any callable that accept an uid as the only
parameter and and returns (gene_id, taxon_id) as value

	counts_iter (iterable) – iterable that yields a (uid, count)

	taxonomy – taxonomy instance

	inc_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to include

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank to which map the counts

	ex_anc (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list]) – ancestor taxa to exclude

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	cached (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function will use
mgkit.simple_cache.memoize to cache some of the functions
used

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with Index taxon_id with the filtered and mapped
counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts(counts_iter, info_func, gmapper=None, tmapper=None, index=None, uid_used=None)

	
Changed in version 0.1.14: added index parameter

Changed in version 0.1.15: added uid_used parameter

Maps counts according to the gmapper and tmapper functions. Each mapped
gene ID count is the sum of all uid that have the same ID(s). The same is
true for the taxa.

	Parameters

	
	counts_iter (iterable) – iterator that yields a tuple (uid, count)

	info_func (func) – function accepting a uid that returns a tuple
(gene_id, taxon_id)

	gmapper (func) – fucntion that accepts a gene_id and returns a list
of mapped IDs

	tmapper (func) – fucntion that accepts a taxon_id and returns a new
taxon_id

	index (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str]) – if None, the index of the Series if
(gene_id, taxon_id), if a str, it can be either gene or
taxon, to specify a single value

	uid_used (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an empty dictionary in which to store the uid
that were assigned to each key of the returned pandas.Series. If
None, no information is saved

	Returns

	array with MultiIndex (gene_id, taxon_id) with the
mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_counts_to_category(counts, gene_map, nomap=False, nomap_id='NOMAP')

	Used to map the counts from a certain gene identifier to another. Genes
with no mappings are not counted, unless nomap=True, in which case they
are counted as nomap_id.

	Parameters

	
	counts (iterator) – an iterator that yield a tuple, with the first value
being the gene_id and the second value the count for it

	gene_map (dictionary) – a dictionary whose keys are the gene_id yield by
counts and the values are iterable of mapping identifiers

	nomap (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, counts for genes with no mappings in gene_map
are discarded, if True, they a counted as nomap_id

	nomap_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the mapping for genes with no mappings

	Returns

	mapped counts

	Return type

	pandas.Series

	
mgkit.counts.func.map_gene_id_to_map(gene_map, gene_id)

	Function that extract a list of gene mappings from a dictionary and returns
an empty list if the gene_id is not found.

	
mgkit.counts.func.map_taxon_id_to_rank(taxonomy, rank, taxon_id, include_higher=True)

	Maps a taxon_id to the request taxon rank. Returns None if
include_higher is False and the found rank is not the one requested.

Internally uses mgkit.taxon.Taxonomy.get_ranked_taxon()

	Parameters

	
	taxonomy – taxonomy instance

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxonomic rank requested

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to map

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, any rank different than the requested
one is discarded

	Returns

	if the mapping is successful, the ranked taxon_id is
returned, otherwise None is returned

	Return type

	(int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None])

 mgkit.counts.glm module

mgkit.counts.glm module

New in version 0.3.3.

GLM models with metagenomes and metatranscriptomes. Experimental

	
mgkit.counts.glm.fit_lowess_interpolate(endog, exog, frac=0.2, it=3, kind='slinear')

	Fits a lowess for the passed endog (Y) and exog (X) and returns an
interpolated function that describes it. The first 4 arguments are passed
to statsmodels.api.sm.nonparametric.lowess(), while the last one is
passed to scipy.interpolate.interp1d()

	Parameters

	
	endog (array) – array of the dependent variable (Y)

	exog (array) – array of the indipendent variable (X)

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the number of elements to use when fitting
(0.0-1.0)

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations to fit the lowess

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation to use

	Returns

	interpolated function representing the lowess fitted from the
data passed

	Return type

	func

	
mgkit.counts.glm.lowess_ci_bootstrap(endog, exog, num=100, frac=0.2, it=3, alpha=0.05, delta=0.0, min_value=0.001, kind='slinear')

	Bootstraps a lowess for the dependent (endog) and indipendent (exog)
arguments.

	Parameters

	
	endog (array) – indipendent variable (Y)

	exog (array) – indipendent variable (X)

	num (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations for the bootstrap

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the array to use when fitting

	it (int [https://docs.python.org/3/library/functions.html#int]) – number of iterations used to fit the lowess

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – confidence intervals for the bootstrap

	delta (float [https://docs.python.org/3/library/functions.html#float]) – passed to statsmodels.api.nonparametric.lowess()

	min_value (float [https://docs.python.org/3/library/functions.html#float]) – minimum value for the function to avoid out of
bounds

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of interpolation passed to
scipy.interpolate.interp1d()

	Returns

	the first element is the function describing the lowest
confidence interval, the second element is for the highest confidence
interval and the last one for the mean

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

Performance increase with the value of delta.

	
mgkit.counts.glm.optimise_alpha_scipy(formula, data, mean_func, q1_func, q2_func)

	
New in version 0.4.0.

Used to find an optimal alpha parameter for the Negative Binomial
distribution used in statsmodels, using the lowess functions from
lowess_ci_bootstrap().

	Parameters

	
	formula (str [https://docs.python.org/3/library/stdtypes.html#str]) – the formula used for the regression

	data (DataFrame) – DataFrame for regression

	mean_func (func) – function for the mean lowess_ci_bootstrap()

	q1_func (func) – function for the q1 lowess_ci_bootstrap()

	q2_func (func) – function for the q2 lowess_ci_bootstrap()

	Returns

	alpha value for the Negative Binomial

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.counts.glm.optimise_alpha_scipy_function(args, formula, data, criterion='aic')

	
New in version 0.4.0.

	
mgkit.counts.glm.variance_to_alpha(mu, func, min_alpha=0.001)

	Based on the variance defined in the Negative Binomial in statsmodels

var = mu + alpha * (mu ** 2)

	Parameters

	
	mu (float [https://docs.python.org/3/library/functions.html#float]) – mean to calculate the alphas for

	func (func) – function that returns the variace of the mean

	min_alpha (float [https://docs.python.org/3/library/functions.html#float]) – value of alpha if the func goes out of bounds

	Returns

	value of alpha for the passed mean

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 mgkit.counts.scaling module

mgkit.counts.scaling module

Scaling functions for counts

	
mgkit.counts.scaling.scale_deseq(dataframe)

	
New in version 0.1.13.

Scale a dataframe using the deseq scaling. Uses scale_factor_deseq()

	
mgkit.counts.scaling.scale_factor_deseq(dataframe)

	
New in version 0.1.13.

Returns the scale factor according to he deseq paper. The columns of the
dataframe are the samples.

size factor \(\hat{s}_{j}\) for sample j (from DESeq paper).

\[\hat{s}_{j} = median_{i} (
\frac
 {k_{ij}}
 {
 \left (
 \prod_{v=1}^{m}
 k_{iv}
 \right)^{1/m}
 }
)\]

	
mgkit.counts.scaling.scale_rpkm(dataframe, gene_len)

	
New in version 0.1.14.

Perform an RPKM scaling of the pandas dataframe/series supplied using the
gene_len series containing the gene sizes for all elements of dataframe

\[RPKM =\frac {10^{9} \cdot C} {N \cdot L}\]

 mgkit.db package

mgkit.db package

Submodules

	mgkit.db.dbm module

	mgkit.db.mongo module

Module contents

 mgkit.db.dbm module

mgkit.db.dbm module

New in version 0.2.1.

This module contains functions and classes to use for a dbm like representation
of annotations using the semidbm package

	
class mgkit.db.dbm.GFFDB(db=None)

	Bases: future.types.newobject.newobject

New in version 0.2.1.

A wrapper for a semidbm instance, used to convert the GFF line stored in
the DB into an mgkit.io.gff.Annotation instance. If a string is
passed to the init method, a DB will be opened with the c flag.

The object behaves like a dictionary, wrapping the access to annoations
using a uid as key and converting the line into an
mgkit.io.gff.Annotation instance.

	
db = None

	

	
items()

	

	
iteritems()

	

	
itervalues()

	

	
values()

	

	
mgkit.db.dbm.create_gff_dbm(annotations, file_name)

	
New in version 0.2.1.

Creates a semidbm database, using an annotation uid as key and the gff
line as value. The object is synced before being returned.

Note

A GFF line is used instead of a json representation because it was
more compact when semidbm was tested.

	Parameters

	
	annotations (iterable) – iterable of annotations

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – database file name, opened with the c flag.

	Returns

	a semidbm database object

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

 mgkit.db.mongo module

mgkit.db.mongo module

New in version 0.2.1.

This module contains functions and classes to use for a DB like representation
of annotations using the pymongo package, a driver to MongoDB.

In a MongoDB document, exported from an annotation, using the
mgkit.io.gff.Annotation.to_mongodb() method, the keys that are defined
are:

seq_id, source, feat_type, start, end, score, strand,
phase, gene_id, taxon_id, bitscore, exp_nonsyn, exp_syn,
length, dbq, coverage, map

These are defined because they have values that are not strings (defined as
properties in mgkit.io.gff.Annotation. The rest of the attributes
defined are kept as well, but no ckeck for the data type is made.

Note

lineage is added as a key, whose values are taxon_id, if a function has
been passed to mgkit.io.gff.Annotation.to_mongodb()

The exception is the map key in the document. It store both the EC mappings
(EC attribute in the GFF), as well as all mappings whose attribute starts with
map_. The former is usually accessed from
mgkit.io.gff.Annotation.get_ec() while the latter from
mgkit.io.gff.Annotation.get_mapping() or
mgkit.io.gff.Annotation.get_mappings().

These 3 methods return a list and this list is used in the MongoDB document.
The MongoDB document will contain a map key where the values are the type
of mappings, and the values the list of IDs the annoation maps to.

Example for the map dictionary

	Type

	GFF

	Annotation

	MongoDB Document

	MongoDB Query

	EC

	EC

	get_ec

	ec

	map.ec

	KO

	map_KO

	get_mapping(‘ko’)

	ko

	map.ko

	eggNOG

	map_EGGNOG

	get_mapping(‘eggnog’)

	eggnog

	map.eggnog

	
class mgkit.db.mongo.GFFDB(db, collection, uri=None, timeout=5)

	Bases: future.types.newobject.newobject

Changed in version 0.3.4: added timeout parameter

Wrapper to a MongoDB connection/db. It is used to automate the convertion
of MongoDB records into mgkit.io.gff.Annotation instances.

	
__getitem__(uid)

	
New in version 0.3.1.

Retrieves an annotation from the DB by its uid

	
__iter__()

	
New in version 0.3.1.

Iterates over all annotations

	
conn = None

	

	
convert_record(record)

	
Changed in version 0.3.1: removes lineage from the attributes

Converts the record (a dictionary instance) to an Annotation

	
cursor(query=None)

	Returns a cursor for the query

	
db = None

	

	
find_annotation(query=None)

	Iterate over a cursor created using query and yields each record
after converting it to a mgkit.io.gff.Annotation instance,
using mgkit.db.mongo.GFFDB.convert_record().

	
insert_many(annotations)

	
New in version 0.3.4.

Inserts annotations into the DB

Warning

The object must be a mgkit.io.gff.Annotation

	
insert_one(annotation)

	
New in version 0.3.4.

Inserts an annotation into the DB

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the passed object is not an annotation

	
items()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection, yielding a
tuple (annotation.uid, annotation)

	
iteritems()

	
New in version 0.3.1.

Alias for GFFDB.items()

	
itervalues()

	
New in version 0.3.1.

Alias for GFFDB.values()

	
keys()

	
New in version 0.3.1.

Iterates over all the uid in the db/collection

	
values()

	
New in version 0.3.1.

Iterates over all the annotations in the db/collection

 mgkit.filter package

mgkit.filter package

Submodules

	mgkit.filter.common module

	mgkit.filter.gff module

	mgkit.filter.lists module

	mgkit.filter.reads module

	mgkit.filter.taxon module

Module contents

Package used to store filter functions (unless specific to a package)

 mgkit.filter.common module

mgkit.filter.common module

Common consts/data for package filter

	
exception mgkit.filter.common.FilterFails

	Bases: exceptions.Exception

Raised if a filter fails

 mgkit.filter.gff module

mgkit.filter.gff module

GFF filtering

	
mgkit.filter.gff.choose_annotation(ann1, ann2, overlap=100, choose_func=None)

	
New in version 0.1.12.

Given two mgkit.io.gff.Annotation, if one of of the two
annotations either is contained in the other or they overlap for at least a
overlap number of bases, choose_func will be applied to both. The
result of choose_func is the the annotation to be discarderd. It returns
None if the annotations should be both kept.

	No checks are made to ensure that the two annotations are on the same

	sequence and strand, as the intersect method of
mgkit.io.gff.Annotation takes care of them.

	Parameters

	
	ann1 – instance of mgkit.io.gff.Annotation

	ann2 – instance of mgkit.io.gff.Annotation

	overlap (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – number of bases overlap that trigger the
filtering

	choose_func (None [https://docs.python.org/3/library/constants.html#None], func) – function that accepts ann1 and ann2 and
return the one to be discarded or None if both are accepted

	Returns

	returns either the mgkit.io.gff.Annotation
to be discarded or None, which is the result of choose_func

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], Annotation)

Note

If choose_func is None, the default function is used:

lambda a1, a2: min(a1, a2, key=lambda el: (el.dbq, el.bitscore,
 len(el)))

In order of importance the db quality, the bitscore and the length. The
annotation with the lowest tuple value is the one to discard.

	
mgkit.filter.gff.filter_annotations(annotations, choose_func=None, sort_func=None, reverse=True)

	
New in version 0.1.12.

Filter an iterable of mgkit.io.gff.Annotation instances sorted
using sort_func as key in sorted and if the order is to be reverse;
it then applies choose_func on all possible pair combinations, using
itertools.combinations.

By default choose_func is choose_annotation() with the default
values, the list of annotation is sorted by bitscore, from the highest to
the lowest value.

	Parameters

	
	annotations (iterable) – iterable of mgkit.io.gff.Annotation
instances

	choose_func (func, None [https://docs.python.org/3/library/constants.html#None]) – function used to select the losing
annotation; if None, it will be choose_annotation() with
default values

	sort_func (func, None [https://docs.python.org/3/library/constants.html#None]) – by default the sorting key is the bitscore of
the annotations

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – passed to sorted, by default is reversed

	Returns

	a set with the annotations that pass the filtering

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.filter.gff.filter_attr_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attr dictionary contains a key whose value is
greater than or equal, or lower than or equal, for the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal or greater than and if
False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_num_s(annotation, attr=None, value=None, greater=True)

	
New in version 0.3.1.

Checks if an annotation attr dictionary contains a key whose value is
greater or lower than the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be greater than and if
False lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_attr_str(annotation, attr=None, value=None, equal=True)

	Checks if an annotation attr dictionary contains a key shose value is
equal to, or contains the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – key in the mgkit.io.gff.Annotation.attr
dictionary

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which we need to compare

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the value must be equal and if False equal value
must be contained

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base(annotation, attr=None, value=None)

	Checks if an annotation attribute is equal to the requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value – the value that the attribute should be equal to

	Returns

	True if the supplied value is equal to the attribute ot False
otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_base_num(annotation, attr=None, value=None, greater=True)

	Checks if an annotation attribute is greater, equal of lower than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation

	value (int [https://docs.python.org/3/library/functions.html#int]) – the value to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the attribute value must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
mgkit.filter.gff.filter_len(annotation, value=None, greater=True)

	Checks if an annotation length is longer, equal of shorter than the
requested value

	Parameters

	
	annotation – mgkit.io.gff.Annotation instance

	value (int [https://docs.python.org/3/library/functions.html#int]) – the length to which the attribute should be compared to

	greater (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotation length must be equal or greater
than and if False equal of lower than

	Returns

	True if the test passes

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 mgkit.filter.lists module

mgkit.filter.lists module

Module used to filter lists

	
mgkit.filter.lists.aggr_filtered_list(val_list, aggr_func=<function mean>, filt_func=<function <lambda>>)

	Aggregate a list of values using ‘aggr_func’ on a list that passed the
filtering in ‘filt_func’.

‘filt_func’ is a function that returns True or False for each value in
val_list. If the return value is True, the element is included in the
values passed to ‘aggr_func’. Internally a list comprehension is used and
the result passed to ‘aggr_func’

	Parameters

	
	val_list (iterable) – list of values

	aggr_func (func) – function used to aggregate the list values

	filt_func (func) – function the return True or False

	Returns

	the result of the applied ‘aggr_func’

 mgkit.filter.reads module

mgkit.filter.reads module

Some test functions to filter sequences

	
mgkit.filter.reads.expected_error_rate(qualities)

	Calculate the expected error rate for an array of qualities (converted to
probabilities).

	
mgkit.filter.reads.trim_by_ee(qualities, min_length=50, threshold=0.5, chars=True, base=33)

	Trim a sequence based on the expected error rate.

 mgkit.filter.taxon module

mgkit.filter.taxon module

New in version 0.1.9.

Taxa filtering functions

	
mgkit.filter.taxon.filter_by_ancestor(taxon_id, filter_list=None, exclude=False, taxonomy=None)

	
New in version 0.1.13.

Convenience function for filter_taxon_by_id_list(), as explained in
the latter example.

	
mgkit.filter.taxon.filter_taxon_by_id_list(taxon_id, filter_list=None, exclude=False, func=None)

	Filter a taxon_id against a list of taxon ids. Returns True if the
conditions of the filter are met.

If func is not None, a function that accepts two values is expected,
it should be either a partial is_ancestor which only accepts taxon_id and
anc_id or another function that behaves the same way.

Note

if func is None, a simple lambda is used to test identity:

func = lambda t_id, a_id: t_id == a_id

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – the taxon id to filter

	filter_list (iterable) – an iterable with taxon ids

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed (i.e. included if NOT found)

	func (func or None [https://docs.python.org/3/library/constants.html#None]) – a function that accepts taxon_id and an anc_id
and returns a bool to indicated if anc_id is ancestor of taxon_id.
Equivalent to is_ancestor().

	Returns

	True if the taxon_id is in the filter list (or a descendant of it)
False if it’s not found. Exclude equal to True reverse the result.

	Found

	Exclude

	Return Value

	Yes

	False

	True

	No

	False

	False

	Yes

	True

	False

	No

	True

	True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Example

If using func and assuming that taxonomy is an instance of
Taxonomy with data loaded:

>>> import functools
>>> import mgkit.taxon
>>> func = functools.partial(mgkit.taxon.is_ancestor, taxonomy)
>>> filter_taxon_by_id_list(1200582, [838], func=func)
True

 mgkit.io package

mgkit.io package

Submodules

	mgkit.io.blast module

	mgkit.io.fasta module

	mgkit.io.fastq module

	mgkit.io.gff module

	mgkit.io.glimmer module

	mgkit.io.snpdat module

	mgkit.io.uniprot module

	mgkit.io.utils module

Module contents

Package used to contain code related to I/O operations

 mgkit.io.blast module

mgkit.io.blast module

Blast routines and parsers

	
mgkit.io.blast.add_blast_result_to_annotation(annotation, gi_taxa_dict, taxonomy, threshold=60)

	
Deprecated since version 0.4.0.

Adds blast information to a GFF annotation.

	Parameters

	
	annotation – GFF annotation object

	gi_taxa_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary returned by
parse_gi_taxa_table().

	taxonomy – Uniprot taxonomy, used to add the taxon name to the
annotation

	
mgkit.io.blast.parse_accession_taxa_table(file_handle, acc_ids=None, key=1, value=2, num_lines=1000000, no_zero=True)

	
New in version 0.2.5.

Changed in version 0.3.0: added no_zero

This function superseeds parse_gi_taxa_table(), since NCBI is
deprecating the GIDs in favor of accessions like X53318. The new file can
be found at the NCBI ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid,
for DNA sequences (nt DB) nucl_gb.accession2taxid.gz.

The file contains 4 columns, the first one is the accession without its
version, the second one includes the version, the third column is the
taxonomic identifier and the fourth is either the old GID or na.

The column used as key is the second, since by default the fasta headers
used in NCBI DBs use the versioned identifier. To use the GID as key, the
key parameter can be set to 3, but if no identifier is found (na as per
the file README), the line is skipped.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	acc_ids (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – if it’s not None only the keys included in the
passed acc_ids list will be returned

	key (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the column to use as accession. Defaults
to the versioned accession that is used in GenBank fasta files.

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	no_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – if True (default) a key with taxon_id of 0 is not yield

Note

GIDs are being phased out in September 2016:
http://www.ncbi.nlm.nih.gov/news/03-02-2016-phase-out-of-GI-numbers/

	
mgkit.io.blast.parse_blast_tab(file_handle, seq_id=0, ret_col=(0, 1, 2, 6, 7, 11), key_func=None, value_funcs=None)

	
New in version 0.1.12.

Parses blast output tab format, returning for each line a key (the query
id) and the columns requested in a tuple.

	Parameters

	
	file_handle (file) – file name or file handle for the blast ouput

	seq_id (int [https://docs.python.org/3/library/functions.html#int]) – index for the column which has the query id

	ret_col (list [https://docs.python.org/3/library/stdtypes.html#list], None [https://docs.python.org/3/library/constants.html#None]) – list of indexes for the columns to be returned or
None if all columns must be returned

	key_func (None [https://docs.python.org/3/library/constants.html#None], func) – function to transform the query id value in the
key returned. If None, the query id is used

	value_funcs (None [https://docs.python.org/3/library/constants.html#None], list [https://docs.python.org/3/library/stdtypes.html#list]) – list of functions to transform the value of
all the requested columns. If None the values are not converted

	Yields

	tuple – iterator of tuples with the first element being the query id
after key_func is applied, if requested and the second element of
the tuple is a tuple with the requested columns ret_col

BLAST+ used with -outfmt 6, default columns

	column index

	description

	0

	query name

	1

	subject name

	2

	percent identities

	3

	aligned length

	4

	number of mismatched positions

	5

	number of gap positions

	6

	query sequence start

	7

	query sequence end

	8

	subject sequence start

	9

	subject sequence end

	10

	e-value

	11

	bit score

	
mgkit.io.blast.parse_fragment_blast(file_handle, bitscore=40.0)

	
New in version 0.1.13.

Parse the output of a BLAST output where the sequences are the single
annotations, so the sequence names are the uid of the annotations.

The only returned values are the best hits, maxed by bitscore and identity.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (float [https://docs.python.org/3/library/functions.html#float]) – minimum bitscore for accepting a hit

	Yields

	tuple – a tuple whose first element is the uid (the sequence name) and
the second is the a list of tuples whose first element is the GID (NCBI
identifier), the second one is the identity and the third is the
bitscore of the hit.

	
mgkit.io.blast.parse_uniprot_blast(file_handle, bitscore=40, db='UNIPROT-SP', dbq=10, name_func=None, feat_type='CDS', seq_lengths=None)

	
New in version 0.1.12.

Changed in version 0.1.13: added name_func argument

Changed in version 0.2.1: added feat_type

Changed in version 0.2.3: added seq_lengths and added subject start and end and e-value

Parses BLAST results in tabular format using parse_blast_tab(),
applying a basic bitscore filter. Returns the annotations associated with
each BLAST hit.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	bitscore (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – the minimum bitscore for an annotation to be
accepted

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database used

	dbq (int [https://docs.python.org/3/library/functions.html#int]) – an index indicating the quality of the sequence database
used; this value is used in the filtering of annotations

	name_func (func) – function to convert the name of the database
sequences. Defaults to lambda x: x.split(‘|’)[1], which can be
be used with fasta files provided by Uniprot

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_lengths (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences lengths, used to
deduct the frame of the ‘-‘ strand

	Yields

	Annotation – instances of mgkit.io.gff.Annotation instance of
each BLAST hit.

 mgkit.io.fasta module

mgkit.io.fasta module

Simple fasta parser and a few utility functions

	
mgkit.io.fasta.load_fasta(file_handle)

	
Changed in version 0.1.13: now returns uppercase sequences

Loads a fasta file and returns a generator of tuples in which the first
element is the name of the sequence and the second the sequence

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fasta file to open; a file name or a file handle
is expected

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence

	
mgkit.io.fasta.load_fasta_files(files)

	
New in version 0.3.4.

Loads all fasta files from a list or iterable

	
mgkit.io.fasta.load_fasta_prodigal(file_handle)

	
New in version 0.3.1.

Reads a Prodigal aminoacid fasta file and yields a dictionary with
basic information about the sequences.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – passed to load_fasta()

	Yields

	dict – dictionary with the information contained in the header, the last
of the attributes put into key attr, while the rest are transformed
to other keys: seq_id, seq, start, end (genomic), strand, ordinal of

	
mgkit.io.fasta.load_fasta_rename(file_handle, name_func=None)

	
New in version 0.3.1.

Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fasta.split_fasta_file(file_handle, name_mask, num_files)

	
New in version 0.1.13.

Splits a fasta file into a series of smaller files.

	Parameters

	
	file_handle (file, str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file with the input sequences

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name template for the splitted files, more
informations are found in mgkit.io.split_write()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – number of files in which to distribute the sequences

	
mgkit.io.fasta.write_fasta_sequence(file_handle, name, seq, wrap=60, write_mode='a')

	Write a fasta sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	wrap (int [https://docs.python.org/3/library/functions.html#int]) – int for the line wrapping. If None, the sequence will be
written in a single line

 mgkit.io.fastq module

mgkit.io.fastq module

Fastq utility functions

	
mgkit.io.fastq.check_fastq_type(qualities)

	Trys to guess the type of quality string used in a Fastq file

	Parameters

	qualities (str [https://docs.python.org/3/library/stdtypes.html#str]) – string with the quality scores as in the Fastq file

	Return str

	a string with the guessed quality score

Note

Possible values are the following, classified but the values usually
used in other softwares:

	ASCII33: sanger, illumina-1.8

	ASCII64: illumina-1.3, illumina-1.5, solexa-old

	
mgkit.io.fastq.choose_header_type(seq_id)

	Return the guessed compiled regular expression
:param str seq_id: sequence header to test

	Returns

	compiled regular expression object or None if no match found

	
mgkit.io.fastq.convert_seqid_to_new(seq_id)

	Convert old seq_id format for Illumina reads to the new found in Casava
1.8+

	Parameters

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	Return str

	the new format seq_id

Note

Example from Wikipedia:

old casava seq_id:
@HWUSI-EAS100R:6:73:941:1973#0/1
new casava seq_id:
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCAC

	
mgkit.io.fastq.convert_seqid_to_old(seq_id, index_as_seq=True)

	
Deprecated since version 0.3.3.

Convert old seq_id format for Illumina reads to the new found in Casava
until 1.8, which marks the new format.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – seq_id of the sequence (stripped of ‘@’)

	index_as_seq (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the index for the multiplex we’ll be
the sequence found at the end of the new format seq_id. Otherwise, 0
we’ll be used

	Return str

	the new format seq_id

	
mgkit.io.fastq.load_fastq(file_handle, num_qual=False)

	
New in version 0.3.1.

Loads a fastq file and returns a generator of tuples in which the first
element is the name of the sequence, the second the sequence and the third
the quality scores (converted in a numpy array if num_qual is True).

Note

this is a simple parser that assumes each sequence is on 4 lines,
1st and 3rd for the headers, 2nd for the sequence and 4th the quality
scores

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – fastq file to open, can be a file name or a
file handle

	num_qual (bool [https://docs.python.org/3/library/functions.html#bool]) – if False (default), the quality score will be
returned as ASCII character, if True a numpy array.

	Yields

	tuple – first element is the sequence name/header, the second element is
the sequence, the third is the quality score. The quality scores are
kept as a string if num_qual is False (default) and converted to a
numpy array with correct values (0-41) if num_qual is True

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the headers in both sequence and quality scores are not

	valid. This implies that the sequence/qualities have carriage returns

	or the file is truncated.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the qualities are in a format different than sanger

	(min 0, max 40) or illumina-1.8 (0, 41)

	
mgkit.io.fastq.load_fastq_rename(file_handle, num_qual=False, name_func=None)

	
New in version 0.3.3.

Mirrors the same functionality in mgkit.io.fasta.load_fasta_rename().
Renames the header of the sequences using name_func, which is called on
each header. By default, the behaviour is to keep the header to the left of
the first space (BLAST behaviour).

	
mgkit.io.fastq.write_fastq_sequence(file_handle, name, seq, qual, write_mode='a')

	
Changed in version 0.3.3: if qual is not a string it’s converted to chars (phred33)

Write a fastq sequence to file. If the file_handle is a string, the file
will be opened using write_mode.

	Parameters

	
	file_handle – file handle or string.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – header to write for the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to write

	qual (str [https://docs.python.org/3/library/stdtypes.html#str]) – quality string

 mgkit.io.gff module

mgkit.io.gff module

This modules define classes and function related to manipulation of GFF/GTF
files.

	
class mgkit.io.gff.Annotation(seq_id='None', start=1, end=1, strand='+', source='None', feat_type='None', score=0.0, phase=0, uid=None, **kwd)

	Bases: mgkit.io.gff.GenomicRange

New in version 0.1.12.

Changed in version 0.2.1: using __slots__ for better memory usage

Alternative implementation for an Annotation. When initialised, If uid is
None, a unique id is added using uuid.uuid4.

	
add_exp_syn_count(seq, syn_matrix=None)

	
New in version 0.1.13.

Adds expected synonymous/non-synonymous values for an annotation.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence corresponding to the annotation seq_id
syn_matrix (None, dict): matrix that determines the return
values. Defaults to the one defined in the called function
mgkit.utils.sequnce.get_seq_expected_syn_count().

	
add_gc_content(seq)

	Adds GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
add_gc_ratio(seq)

	Adds GC content information for an annotation. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

Modifies the instances of the annotation. gc_ratio will be added to its
attributes.

	Parameters

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence referred in the GFF

	
attr

	

	
bitscore

	bitscore of the annotation

	
counts

	
New in version 0.2.2.

Returns the sample counts for the annotation

	
coverage

	
New in version 0.1.13.

Return the total coverage for the annotation

	Return float

	coverage

	Raises

	AttributeNotFound – if no coverage attribute is found

	
db

	db used for the gene_id prediction

	
dbq

	db quality of the annotation

	
exp_nonsyn

	
New in version 0.1.13.

Returns the expected number of non-synonymous changes

	
exp_syn

	
New in version 0.1.13.

Returns the expected number of synonymous changes

	
feat_type

	

	
fpkms

	
New in version 0.2.2.

Returns the sample fpkms for the annotation

	
gene_id

	gene_id of the annotation, or ko if available

	
get_aa_seq(seq, start=0, tbl=None, snp=None)

	
New in version 0.1.16.

Returns a translated aminoacid sequence of the annotation. The snp
parameter is passed to Annotation.get_nuc_seq()

	Parameters

	
	seq (seq) – chromosome/contig sequence

	start (int [https://docs.python.org/3/library/functions.html#int]) – position (0-based) from where the correct occurs
(frame). If None, the phase attribute is used

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon,
passed to mgkit.utils.sequence.translate_sequence()

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP and the
second element is the change

	Returns

	aminoacid sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_attr(attr, conv=<type 'str'>)

	
Changed in version 0.3.4: any GFF attribute can be returned

Changed in version 0.3.3: added seq_id as special attribute, in addition do length

New in version 0.1.13.

Generic method to get an attribute and convert it to a specific
datatype. The order for the lookup is:

	length

	self.attr (dictionary)

	getattr(self) of the first 8 columns of a GFF (seq_id, source, …)

	
get_ec(level=4)

	
New in version 0.1.13.

Changed in version 0.2.0: returns a set instead of a list

Returns the EC values associated with the annotation, cutting them at
the desired level.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – level of classification desired (between 1 and 4)

	Returns

	list of all EC numbers associated, at the desired level, if
none are found an empty set is returned

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
get_mapping(db)

	
New in version 0.1.13.

Returns the mappings, to a particular db, associated with the
annotation.

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	Returns

	list of all mappings associated, to the specified db, if
none are found an empty list is returned

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_mappings()

	
New in version 0.2.1.

Return a dictionary where the keys are the mapping DBs (lowercase) and
and the values are the mapping IDs for that DB

	
get_nuc_seq(seq, reverse=False, snp=None)

	
New in version 0.1.13.

Changed in version 0.1.16: added snp parameter

Returns the nucleotidic sequence that the annotation covers. if the
annotation’s strand is -, and reverse is True, the reverse
complement is returned.

	Parameters

	
	seq (seq) – chromosome/contig sequence

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the strand is ‘-‘, a reverse complement
is returned

	snp (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – first element is the position of the SNP relative to
the Annotation and the second element is the change

	Returns

	nucleotide sequence with requested transformations

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_number_of_samples(min_cov=4)

	
New in version 0.1.13.

Returns the number of sample that have at least a minimum coverage of
min_cov.

	Parameters

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage

	Return int

	number of samples passing the filter

	Raises

	AttributeNotFound – if no sample coverage attribute is found

	
is_syn(seq, pos, change, tbl=None, abs_pos=True, start=0)

	
New in version 0.1.16.

Return if a SNP is synonymous or non-synonymous.

	Parameters

	
	seq (seq) – reference sequence of the annotation

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position of the SNP on the reference (1-based index)

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation table. Defaults to the
universal genetic code

	abs_pos (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the pos is referred to the reference and
not a position relative to the annotation

	start (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – phase to be used to get the start position of
the codon. if None, the Annotation phase will be used

	Returns

	True if the SNP is synonymous, false if it’s non-synonymous

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
length

	
Changed in version 0.2.0.

Length of the annotation, uses len(self)

	
phase

	

	
region

	
New in version 0.1.13.

Return the region covered by the annotation, to use in samtools

	
sample_coverage

	
New in version 0.1.13.

Returns a dictionary with the coverage for each sample, the returned
dictionary has the sample id (stripped of the _cov) suffix and as
values the coverage (converted via int()).

	Return dict

	dictionary with the samples’ coverage

	
score

	

	
set_attr(attr, value)

	
New in version 0.1.13.

Generic method to set an attribute

	
set_mapping(db, values)

	
New in version 0.1.13.

Set mappings to a particular db, associated with the
annotation.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to which the mappings come from

	mappings (iterable) – iterable of mappings

	
source

	

	
taxon_db

	db used for the taxon_id prediction

	
taxon_id

	
Changed in version 0.3.1: if taxon_id is set to “None” as a string, it’s converted to None

taxon_id of the annotation

	
to_dict(exclude_attr=None)

	
New in version 0.3.1.

Return a dictionary representation of the Annotation.

	Parameters

	exclude_attr (str [https://docs.python.org/3/library/stdtypes.html#str],list [https://docs.python.org/3/library/stdtypes.html#list]) – attributes to exclude from the dictionary,
can be either a single attribute (string) or a list of strings

	Returns

	dictionary with the annotation

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
to_file(file_handle)

	Writes the GFF annotation to file_handle

	
to_gff(sep='=')

	Format the Annotation as a GFF string.

	Parameters

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator key -> value

	Returns

	annotation formatted as GFF

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
to_gtf(gene_id_attr='uid', sep=' ')

	
New in version 0.1.15.

Changed in version 0.1.16: added gene_id_attr parameter

Changed in version 0.2.2: added sep argument, default to a space, now

Simple conversion to a valid GTF. gene_id and transcript_id are set to
uid or the attribute specified using the gene_id_attr parameter.
It’s written to be used with SNPDat.

	
to_json()

	
New in version 0.2.1.

Changed in version 0.3.1: now Annotation.to_dict() is used

Returns a json representation of the Annotation

	
to_mongodb(lineage_func=None, indent=None, raw=False)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: added indent parameter

Changed in version 0.3.4: added raw

Returns a MongoDB document that represent the Annotation.

	Parameters

	
	lineage (func) – function used to populate the lineage key, returns
a list of taxon_id

	indent (int [https://docs.python.org/3/library/functions.html#int]) – the amount of indent to put in the record, None (the
default) is for the most compact - one line for the record

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the method returns a string, which is the
json dump, if False, the value returned is the dictionary

	Returns

	the MongoDB document, with Annotation.uid as _id, as
a string if raw is True, a dictionary if it is False

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
uid

	
New in version 0.1.13.

uid of the annotation

	
exception mgkit.io.gff.AttributeNotFound

	Bases: exceptions.Exception

Raised if an attribute is not found in a GFF file

	
exception mgkit.io.gff.DuplicateKeyError

	Bases: exceptions.Exception

New in version 0.1.12.

Raised if a GFF annotation contains duplicate keys

	
class mgkit.io.gff.GenomicRange(seq_id='None', start=1, end=1, strand='+')

	Bases: future.types.newobject.newobject

Defines a genomic range

Changed in version 0.2.1: using __slots__ for better memory usage

	
__contains__(pos)

	
Changed in version 0.2.3: a range or a subclass are accepted

New in version 0.1.16.

Tests if the position is inside the range of the GenomicRange

Pos is 1-based as GenomicRange.start and
GenomicRange.end

	
end

	

	
expand_from_list(others)

	Expand the GenomicRange range instance with a list of
GenomicRange

	Parameters

	others (iterable) – iterable of GenomicRange

	
get_range()

	
New in version 0.1.13.

Returns the start and end position as a tuple

	
get_relative_pos(pos)

	
New in version 0.1.16.

Given an absolute position (referred to the reference), convert the
position to a coordinate relative to the GenomicRange

	Returns

	the position relative to the GenomicRange

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the position is not in the range

	
intersect(other)

	Return an instance of GenomicRange that represent the
intersection of the current instance and another.

	
seq_id

	

	
start

	

	
strand

	

	
union(other)

	Return the union of two GenomicRange

	
mgkit.io.gff.annotate_sequence(name, seq, window=None)

	

	
mgkit.io.gff.annotation_coverage(annotations, seqs, strand=True)

	
New in version 0.1.12.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the key, (seq_id, strand) if strand is
True or seq_id if strand is False, and the coverage is the second
value.

	
mgkit.io.gff.annotation_coverage_sorted(annotations, seqs, strand=True)

	
New in version 0.3.1.

Given a list of annotations and a dictionary where the keys are the
sequence names referred in the annotations and the values are the sequences
themselves, returns a number which indicated how much the sequence length
is “covered” in annotations. If strand is True the coverage is strand
specific.

Note

It differs from annotation_coverage() because it assumes the
annotations are correctly sorted and in the values yielded

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary in which the keys are the sequence names and
the values are the sequences

	strand (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the values are strand specific (the
annotations) are grouped by (seq_id, strand) instead of seq_id

	Yields

	tuple – the first element is the seq_id, the second the strand (if
strand is True, else it’s set to None), and the third element is the
coverage.

	
mgkit.io.gff.annotation_elongation(ann1, annotations)

	
New in version 0.1.12.

Given an Annotation instance and a list of the instances of the
same class, returns the longest overlapping range that can be found and the
annotations that are included in it.

Warning

annotations are not checked for seq_id and strand

	Parameters

	
	ann1 (Annotation) – annotation to elongate

	annotations (iterable) – iterable of Annotation instances

	Returns

	the first element is the longest range found, while the the
second element is a set with the annotations used

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.io.gff.convert_gff_to_gtf(file_in, file_out, gene_id_attr='uid')

	
New in version 0.1.16.

Function that uses Annotation.to_gtf() to convert a GFF into GTF.

	Parameters

	
	file_in (str [https://docs.python.org/3/library/stdtypes.html#str], file) – either file name or file handle of a GFF file

	file_out (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name to which write the converted annotations

	
mgkit.io.gff.diff_gff(files, key_func=None)

	
New in version 0.1.12.

Returns a simple diff made between a list of gff files. The annotations are
grouped using key_func, so it depends on it to find similar annotations.

	Parameters

	
	files (iterable) – an iterable of file handles, pointing to GFF files

	key_func (func) – function used to group annotations, defaults to this
key: (x.seq_id, x.strand, x.start, x.end, x.gene_id, x.bitscore)

	Returns

	the returned dictionary keys are determined by key_func and as
values lists. The lists elements are tuple whose first element is the
index of the file, relative to files and the second element is the
line number in which the annotation is. Can be used with the
linecache [https://docs.python.org/3/library/linecache.html#module-linecache] module.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.elongate_annotations(annotations)

	
New in version 0.1.12.

Given an iterable of Annotation instances, tries to find the all
possible longest ranges and returns them.

Warning

annotations are not checked for seq_id and strand

	Parameters

	annotations (iterable) – iterable of Annotation instances

	Returns

	set with the all ranges found

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
mgkit.io.gff.extract_nuc_seqs(annotations, seqs, name_func=<function <lambda>>, reverse=False)

	
New in version 0.1.13.

Extract the nucleotidic sequences from a list of annotations. Internally
uses the method Annotation.get_nuc_seq().

	Parameters

	
	annotations (iterable) – iterable of Annotation instances

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the sequences referenced in the
annotations

	name_func (func) – function used to extract the sequence name to be
used, defaults to the uid of the annotation

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the annotations on the - strand are reverse
complemented

	Yields

	tuple – tuple whose first element is the sequence name and the second is
the sequence to which the annotation refers.

	
mgkit.io.gff.from_aa_blast_frag(hit, parent_ann, aa_seqs)

	

	
mgkit.io.gff.from_gff(line, strict=True, encoding='ascii')

	
New in version 0.1.12.

Changed in version 0.2.6: added strict parameter

Changed in version 0.4.0: added encoding parameter

Parse GFF line and returns an Annotation instance

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – GFF line

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Returns

	instance of Annotation for the line

	Return type

	Annotation

	Raises

	DuplicateKeyError – if the attribute column has duplicate keys

	
mgkit.io.gff.from_glimmer3(header, line, feat_type='CDS')

	
New in version 0.1.12.

Parses the line of a GLIMMER3 ouput and returns an instance of a GFF
annotation.

	Parameters

	
	header (str [https://docs.python.org/3/library/stdtypes.html#str]) – the seq_id to which the ORF belongs

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – the prediction line for the orf

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the feature type to use

	Returns

	instance of annotation

	Return type

	Annotation

Example

Assuming a GLIMMER3 output like this:

>sequence0001
orf00001 66 611 +3 6.08

The code used is:

>>> header = 'sequence0001'
>>> line = 'orf00001 66 611 +3 6.08'
>>> from_glimmer3(header, line)

	
mgkit.io.gff.from_hmmer(line, aa_seqs, feat_type='gene', source='HMMER', db='CUSTOM', custom_profiles=True, noframe=False)

	
New in version 0.1.15: first implementation to move old scripts to new GFF specs

Changed in version 0.2.1: removed compatibility with old scripts

Changed in version 0.2.2: taxon_id and taxon_name are not saved for non-custom profiles

Changed in version 0.3.1: added support for non mgkit-translated sequences (noframe)

Parse HMMER results (one line), it won’t parse commented lines (starting
with #)

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMMER domain table line

	aa_seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with amino-acid sequences (name->seq),
used to get the correct nucleotide positions

	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘feature type’ column

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – string to be used in the ‘source’ column

	custom_profiles (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the profile name contains gene,
taxonomy and reviewed information in the form
KOID_TAXONID_TAXON-NAME(-nr)

	noframe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the sequence is assumed to be in frame f0

	Returns

	A Annotation instance

Note

if custom_profiles is False, gene_id, taxon_id and taxon_name will
be equal to the profile name

	
mgkit.io.gff.from_json(line)

	
New in version 0.2.1.

Returns an Annotation from a json representation

	
mgkit.io.gff.from_mongodb(record, lineage=True)

	
New in version 0.2.1.

Changed in version 0.2.2: added handling of counts_ and fpkms_

Changed in version 0.2.6: better handling of missing attributes and added lineage parameter

Returns a Annotation instance from a MongoDB record (created)
using Annotation.to_mongodb(). The actual record returned by pymongo
is a dictionary that is copied, manipulated and passed to the
Annotation.__init__().

	Parameters

	
	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary with the full record from a MongoDB query

	lineage (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates if the lineage information in the record
should be kept in the annotation

	Returns

	instance of Annotation object

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast(hit, db, feat_type='CDS', seq_len=None, to_nuc=False, **kwd)

	
New in version 0.1.12.

Changed in version 0.1.16: added to_nuc parameter

Changed in version 0.2.3: removed to_nuc, the hit can include the subject end/start and evalue

Returns an instance of Annotation

	Parameters

	
	hit (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a BLAST hit, from mgkit.io.blast.parse_blast_tab()

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db used with BLAST

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – sequence length, if supplied, the phase for strand ‘-‘
can be assigned, otherwise is assigned a 0

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.from_nuc_blast_frag(hit, parent_ann, db='NCBI-NT')

	

	
mgkit.io.gff.from_prodigal_frag(main_gff, blast_gff, attr='ID', split_func=None)

	
Changed in version 0.3.3: fixed a bug for the strand, also the code is tested

New in version 0.2.6: experimental

Reads the GFF given in output by PRODIGAL and the resulting GFF from using
BLAST (or other software) on the aa or nucleotide file output by PRODIGAL.

It then integrates the two outputs, so to the PRODIGAL GFF is added the
information from the the output of the gene prediction software used.

	Parameters

	
	main_gff (file) – GFF file from PRODIGAL

	blast_gff (file) – GFF with the returned annotations

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute in the PRODIGAL GFF that is used to identify an
annotation

	split_func (func) – function to rename the headers from the predicted
sequences back to their parent sequence

	Yields

	annotation – annotation for each blast_gff back translated

	
mgkit.io.gff.from_sequence(name, seq, feat_type='SEQUENCE', **kwd)

	
New in version 0.1.12.

Returns an instance of Annotation for the full length of a
sequence

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence, to get the length of the annotation

	Keyword Arguments

	
	feat_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – feature type in the GFF

	**kwd – any additional column

	Returns

	instance of Annotation

	Return type

	Annotation

	
mgkit.io.gff.get_annotation_map(annotations, key_func, value_func)

	
New in version 0.1.15.

Applies two functions to an iterable of annotations with an iterator
returned with the applied functions. Useful to build a dictionary

	Parameters

	
	annotations (iterable) – iterable of annotations

	key_func (func) – function that accept an annotation as argument and
returns one value, the first of the returned tuple

	value_func (func) – function that accept an annotation as argument and
returns one value, the second of the returned tuple

	Yields

	tuple – a tuple where the first value is the result of key_func on
the passed annotation and the second is the value returned by
value_func on the same annotation

	
mgkit.io.gff.group_annotations(annotations, key_func=<function <lambda>>)

	
New in version 0.1.12.

Group Annotation instances in a dictionary by using a key function
that returns the key to be used in the dictionary.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Returns

	dictionary whose keys are returned by key_func and the values
are lists of annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

>>> ann = [Annotation(seq_id='seq1', strand='+', start=10, end=15),
... Annotation(seq_id='seq1', strand='+', start=1, end=5),
... Annotation(seq_id='seq1', strand='-', start=30, end=100)]
>>> group_annotations(ann)
{('seq1', '+'): [seq1(+):10-15, seq1(+):1-5], ('seq1', '-'): [seq1(-):30-100]}

	
mgkit.io.gff.group_annotations_by_ancestor(annotations, ancestors, taxonomy)

	
New in version 0.1.13.

Group annotations by the ancestors provided.

	Parameters

	
	annotations (iterable) – annotations to group

	ancestors (iterable) – list of ancestors accepted

	taxonomy – taxonomy class

	Returns

	grouped annotations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.group_annotations_sorted(annotations, key_func=<function <lambda>>)

	
New in version 0.1.13.

Group Annotation instances by using a key function that returns a
key. Assumes that the annotations are already sorted to return an iterator
and save memory. One way to sort them is using: sort -s -k 1,1 -k 7,7 on
the file.

	Parameters

	
	annotations (iterable) – iterable with Annotation instances

	key_func (func) – function used to extract the key used in the
dictionary, defaults to a function that returns
(ann.seq_id, ann.strand)

	Yields

	list – a list of the grouped annotations by key_func values

	
mgkit.io.gff.load_gff_base_info(files, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.uid and the value
is a tuple (Annotation.gene_id, Annotation.taxon_id)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.load_gff_mappings(files, map_db, taxonomy=None, exclude_ids=None, include_taxa=None, encoding='ascii')

	This function is useful if the number of annotations in a GFF is high or
there are memory constraints on the system. It returns a dictionary that
can be used with functions like
mgkit.counts.func.load_sample_counts().

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – file name or list of paths of GFF files

	map_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – any kind mapping in the GFF, as passed to
Annotation.get_mapping()

	taxonomy – taxonomy pickle file, needed if include_taxa is not None

	exclude_ids (set [https://docs.python.org/3/library/stdtypes.html#set], list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of gene_id to exclude from the
dictionary

	include_taxa (int [https://docs.python.org/3/library/functions.html#int], iterable) – a taxon_id or list thereof to be passed
to mgkit.taxon.taxonomy.is_ancestor(), so only the taxa that
have the those taxon_id(s) as ancestor(s) are kept

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – passed to parse_gff()

	Returns

	dictionary where the key is Annotation.gene_id and the
value is a list of mappings, as returned by
Annotation.get_mapping()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.io.gff.parse_gff(file_handle, gff_type=<function from_gff>, strict=True, encoding='ascii')

	
Changed in version 0.4.0: In some cases ASCII decoding is not enough, so it is parametrised now

Changed in version 0.3.4: added decoding from binary for compatibility with Python3

Changed in version 0.2.6: added strict parameter

Changed in version 0.2.3: correctly handling of GFF with comments of appended sequences

Changed in version 0.1.12: added gff_type parameter

Parse a GFF file and returns generator of GFFKegg instances

Accepts a file handle or a string with the file name

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	gff_type (class) – class/function used to parse a GFF annotation

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – encoding of the file, if ascii fails, use utf8

	Yields

	Annotation – an iterator of Annotation instances

	
mgkit.io.gff.parse_gff_files(files, strict=True)

	
New in version 0.1.15.

Changed in version 0.2.6: added strict parameter

Function that returns an iterator of annotations from multiple GFF files.

	Parameters

	
	files (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – iterable of file names of GFF files, or a single
file name

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True duplicate keys raise an exception

	Yields

	Annotation – iterator of annotations

	
mgkit.io.gff.split_gff_file(file_handle, name_mask, num_files=2, encoding='ascii')

	
New in version 0.1.14.

Changed in version 0.2.6: now accept a file object as sole input

Changed in version 0.4.0: added encoding parameter

Splits a GFF, or a list of them, into a number of files. It is assured that
annotations for the same sequence are kept in the same file, which is
useful for cases like filtering, even when the annotations are from
different GFF files.

Internally, a structure is kept to check if a sequence ID is already been
stored to a file, in which case the annotation is written to that file,
otherwise a random file handles (among the open ones) is chosen.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) – a single or list of file handles (or file
names), from which the GFF annotations are read

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

Example

>>> import glob
>>> files = glob.glob('*.gff')
>>> name_mask = 'split-file-{0}.gff'
>>> split_gff_file(files, name_mask, 5)

	
mgkit.io.gff.write_gff(annotations, file_handle, verbose=True)

	
Changed in version 0.1.12: added verbose argument

Write a GFF to file

	Parameters

	
	annotations (iterable) – iterable that returns GFFKegg
or Annotation instances

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to write to

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a message is logged

 mgkit.io.glimmer module

mgkit.io.glimmer module

	
mgkit.io.glimmer.parse_glimmer3(file_handle)

	Parses an ouput file from glimmer3 and yields the header and prediction
lines. Used to feed the mgkit.io.gff.from_glimmer3() function.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or file handle to read from

	Yields

	tuple – first element is the sequence of the predicted gene and the
second is the prediction line

 mgkit.io.snpdat module

mgkit.io.snpdat module

SNPDat reader

	
class mgkit.io.snpdat.SNPDatRow(line=None, rev_comp=None)

	Bases: future.types.newobject.newobject

Class containing information ouputted by SNPDat in its result file. One
instance contains information about a row in the file.

	
chr_name

	the queried SNPs chromosome ID

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
chr_pos

	queried SNPs genomic location

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
in_feat

	Whether or not the queried SNP was within a feature

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
region

	Region containing the SNP; either exonic, intronic or
intergenic

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
feat_dist

	Distance to nearest feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feature

	Either the closest feature to the SNP or the feature
containing the SNP

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_features

	number of different features that the SNP is
annotated to

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_num

	number of annotations of the current feature

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_start

	Start of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
feat_end

	End of feature (bp)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
gene_id

	gene ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_name

	gene name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_id

	transcript ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
transcript_name

	transcript name for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exon

	exon that contains the current feature and the total
number of annotated exons for the gene containing the feature

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
strand

	strand sense of the feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ann_frame

	annotated reading frame (when contained in the GTF)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
frame

	reading frame estimated by SNPdat

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
num_stops

	estimated number of stop codons in the estimated
reading frame

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
codon

	codon containing the SNP, position in the codon and
reference base and mutation

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_change

	amino acid for the reference codon and new
amino acid with the mutation in place

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
nuc_ref

	reference nucleotide

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]

	
aa_change

	amino acid for the reference codon and new amino
acid with the mutation in place

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
synonymous

	Whether or not the mutation is synonymous

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
protein_id

	protein ID for the current feature

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
messages

	messages in the SNPDat line

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
aa_change

	

	
ann_frame

	

	
chr_name

	

	
chr_pos

	

	
codon

	

	
exon

	

	
feat_dist

	

	
feat_end

	

	
feat_num

	

	
feat_start

	

	
feature

	

	
frame

	

	
gene_id

	

	
gene_name

	

	
in_feat

	

	
messages

	

	
nuc_change

	

	
nuc_ref

	

	
num_features

	

	
num_stops

	

	
protein_id

	

	
region

	

	
strand

	

	
synonymous

	

	
transcript_id

	

	
transcript_name

	

	
mgkit.io.snpdat.snpdat_reader(f_handle)

	Simple SNPDat reader.

f_handle: file handle or string for the SNPDat result file

	Returns

	generator of SNPDatRow instances

 mgkit.io.uniprot module

mgkit.io.uniprot module

New in version 0.1.13.

Uniprot file formats

	
mgkit.io.uniprot.parse_uniprot_mappings(file_handle, gene_ids=None, mappings=None, num_lines=10000000)

	Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator with the mappings.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]) – number of which a message is logged. If None,
no message is logged

	Yields

	tuple – the first element is the gene ID, the second is the mapping type
and third element is the mapped ID

	
mgkit.io.uniprot.uniprot_mappings_to_dict(file_handle, gene_ids, mappings, num_lines=None)

	
Changed in version 0.3.4: added num_lines

Parses a Uniprot mapping file [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz],
returning a generator of dictionaries with the mappings requested.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or open file handle

	gene_ids (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – if not None, the returned mappings are for the
gene IDs specified

	mappings (None [https://docs.python.org/3/library/constants.html#None], set [https://docs.python.org/3/library/stdtypes.html#set]) – mappings to be returned

	num_lines (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – passed to parse_uniprot_mappings()

	Yields

	tuple – the first element is the gene ID, the second is a dictionary
with all the mappings found, the key is the mapping type and the value
is a list of all mapped IDs

 mgkit.io.utils module

mgkit.io.utils module

Various utilities to help read and process files

	
exception mgkit.io.utils.UnsupportedFormat

	Bases: exceptions.IOError

Raised if the a file can’t be opened with the correct module

	
mgkit.io.utils.compressed_handle(file_handle)

	
New in version 0.1.13.

Tries to wrap a file handle in the appropriate compressed file class.

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – file handle

	Returns

	the same file handle if no suitable compressed file class is
found or the new file_handle which supports the compression

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.group_tuples_by_key(iterator, key_func=None, skip_elements=0)

	
New in version 0.3.1.

Group the elements of an iterator by a key and yields the grouped elements.
The elements yielded by the iterator are assumed to be a list or tuple,
with the default key (when key_func is None) being the first of the of
the objects inside that element. This behaviour can be customised by
passing to key_func a function that accept an element and returns the key
to be used.

Note

the iterable assumen that the elements are already sorted by their keys

	Parameters

	
	iterator (iterable) – iterator to be grouped

	key_func (func) – function that accepts a element and returns its
associated key

	skip_elements (int [https://docs.python.org/3/library/functions.html#int]) – number of elements to skip at the start

	Yields

	list – a list of the grouped elements by key

	
mgkit.io.utils.open_file(file_name, mode='r')

	
New in version 0.1.12.

Changed in version 0.3.4: using io.open, always in binary mode

Opens a file using the extension as a guide to which module to use.

Note

Unicode makes for a slower .translate method in Python2, so it’s
best to use the open builtin.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – mode used to open the file

	Returns

	file handle

	Return type

	file

	Raises

	UnsupportedFormat – if the module to open the file is not available

	
mgkit.io.utils.split_write(records, name_mask, write_func, num_files=2)

	
New in version 0.1.13.

Splits the writing of a number of records in a series of files. The
name_mask is used as template for the file names. A string like
“split-files-{0}” can be specified and the function applies format with the
index of the pieces.

	Parameters

	
	records (iterable) – an iterable that returns a object to be saved

	name_mask (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string used as template for the output file names
on which the function applies string.format()

	write_func (func) – a function that is called to write to the files. It
needs to accept a file handles as first argument and the record
returned by records as the second argument

	num_files (int [https://docs.python.org/3/library/functions.html#int]) – the number of files to split the records

 mgkit.mappings package

mgkit.mappings package

Submodules

	mgkit.mappings.cazy module

	mgkit.mappings.eggnog module

	mgkit.mappings.enzyme module

	mgkit.mappings.go module

	mgkit.mappings.pandas_map module

	mgkit.mappings.taxon module

	mgkit.mappings.utils module

Module contents

 mgkit.mappings.cazy module

mgkit.mappings.cazy module

Module containing classes and functions to deal with CaZy data

 mgkit.mappings.eggnog module

mgkit.mappings.eggnog module

Module containing classes and functions to deal with eggNOG data

Todo

	unify download of data from web

	
class mgkit.mappings.eggnog.NOGInfo(members=None, funccat=None, description=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.1.14.

Changed in version 0.4.0: made file reading compatible with Python 3

Mappings from Uniprot to eggNOG

..note:

load_description is optional

	
get_gene_funccat(gene_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG gene ID

	
get_gene_nog(gene_id)

	Returns the COG/NOG ID of the requested eggNOG gene ID

	
get_nog_funccat(nog_id)

	Returns the functional category (one letter, EGGNOG_CAT keys)
for the requested eggNOG COG/NOG ID

	
get_nog_gencat(nog_id)

	Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested eggNOG COG/NOG IDs

	
get_nogs_funccat(nog_ids)

	Returns the functional categories for a list of COG/NOG IDs. Uses
NOGInfo.get_nog_funccat()

	
load_description(file_handle)

	Loads data from NOG.description.txt.gz

file_handle can either an open file or a path

	
load_funccat(file_handle)

	Loads data from NOG.funccat.txt.gz

file_handle can either an open file or a path

	
load_members(file_handle)

	Loads data from NOG.members.txt.gz

file_handle can either an open file or a path

	
mgkit.mappings.eggnog.get_general_eggnog_cat(category)

	
New in version 0.1.14.

Returns the functional category (EGGNOG_CAT_NAMES keys)
for the requested single letter functional category (EGGNOG_CAT
keys)

 mgkit.mappings.enzyme module

mgkit.mappings.enzyme module

New in version 0.1.14.

EC mappings

	
mgkit.mappings.enzyme.change_mapping_level(ec_map, level=3)

	
New in version 0.1.14.

Given a dictionary, whose values are dictionaries, in which a key is named
ec and its value is an iterable of EC numbers, returns an iterator that
can be used to build a dictionary with the same top level keys and the
values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary generated by
mgkit.net.uniprot.get_gene_info()

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

Example

>>> from mgkit.net.uniprot import get_gene_info
>>> from mgkit.mappings.enzyme import change_mapping_level
>>> ec_map = get_gene_info('Q9HFQ1', columns='ec')
{'Q9HFQ1': {'ec': '1.1.3.4'}}
>>> dict(change_mapping_level(ec_map, level=2))
{'Q9HFQ1': {'1.1'}}

	
mgkit.mappings.enzyme.get_enzyme_full_name(ec_id, ec_names, sep=', ')

	
New in version 0.2.1.

From a EC identifiers and a dictionary of names builds a comma separated
name (by default) that identifies the function of the enzyme.

	Parameters

	
	ec_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – EC identifier

	ec_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of names that can be produced using
parse_expasy_file()

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – string used to join the names

	Returns

	the enzyme classification name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
mgkit.mappings.enzyme.get_enzyme_level(ec, level=4)

	
New in version 0.1.14.

Returns an enzyme class at a specific level , between 1 and 4 (by default
the most specific, 4)

	Parameters

	
	ec (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string representing an EC number (e.g. 1.2.4.10)

	level (int [https://docs.python.org/3/library/functions.html#int]) – from 1 to 4, to get a different level specificity of in
the enzyme classification

	Returns

	the EC number at the requested specificity

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> from mgkit.mappings.enzyme import get_enzyme_level
>>> get_enzyme_level('1.1.3.4', 1)
'1'
>>> get_enzyme_level('1.1.3.4', 2)
'1.1'
>>> get_enzyme_level('1.1.3.4', 3)
'1.1.3'
>>> get_enzyme_level('1.1.3.4', 4)
'1.1.3.4'

	
mgkit.mappings.enzyme.get_mapping_level(ec_map, level=3)

	
New in version 0.3.0.

Given a dictionary, whose values are iterable of EC numbers, returns an
iterator that can be used to build a dictionary with the same top level
keys and the values are sets of the transformed EC numbers.

	Parameters

	
	ec_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary genes to EC

	level (int [https://docs.python.org/3/library/functions.html#int]) – number from 1 to 4, to specify the level of the mapping,
passed to get_enzyme_level()

	Yields

	tuple – a tuple (gene_id, set(ECs)), which can be passed to dict to
make a dictionary

	
mgkit.mappings.enzyme.parse_expasy_file(file_name)

	Used to load enzyme descriptions from the file enzclass.txt on
expasy [http://expasy.org].

The FTP url for enzclass.txt is:
ftp://ftp.expasy.org/databases/enzyme/enzclass.txt

 mgkit.mappings.go module

mgkit.mappings.go module

Module containing classes and functions to deal with Gene Ontology data

 mgkit.mappings.pandas_map module

mgkit.mappings.pandas_map module

Module that contains mapping operations on pandas data structures

	
mgkit.mappings.pandas_map.calc_coefficient_of_variation(dataframe)

	Calculate coefficient of variation for a DataFrame. Uses formula from
Wikipedia [http://en.wikipedia.org/wiki/Coefficient_of_variation]

The formula used is \(\left (1 + \frac {1}{4n} \right) * c_{v}\)
where \(c_{v} = \frac {s}{\bar{x}}\)

	
mgkit.mappings.pandas_map.concatenate_and_rename_tables(dataframes, roots)

	Concatenates a list of pandas.DataFrame instances and renames the
columns prepending a string to each column in each table from a list of
prefixes.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of prefixes to append to the column names of
each DataFrame

	Return DataFrame

	returns a DataFrame instance

Todo

	move to pandas_utils?

	
mgkit.mappings.pandas_map.group_dataframe_by_mapping(dataframe, mapping, root_taxon, name_dict=None)

	Return a pandas.DataFrame filtered by mapping and root taxon, the
values for each column is averaged over all genes mapping to a category.

	Parameters

	
	dataframe (DataFrame) – DataFrame with multindex gene-root

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->genes

	root_taxon (str [https://docs.python.org/3/library/stdtypes.html#str]) – root taxon to group genes

	name_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of category->name

	Return DataFrame

	DataFrame filtered

	
mgkit.mappings.pandas_map.make_stat_table(dataframes, roots)

	Produces a pandas.DataFrame that summarise the supplied
DataFrames. The stats include mean, stdev and coefficient of variation for
each root taxon.

	Parameters

	
	dataframes (iterable) – iterable of DataFrame instances

	roots (iterable) – list of root taxa to which each table belongs

	Return DataFrame

	returns a DataFrame instance

 mgkit.mappings.taxon module

mgkit.mappings.taxon module

Module used to map taxon_id to different levels in the taxonomy.

	
mgkit.mappings.taxon.map_taxon_by_id_list(taxon_id, map_ids, func)

	Maps a taxon_id to a list of taxon IDs, using the function supplied.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to map

	map_ids (iterable) – list of taxon IDs to which the taxon_id will be
mapped.

	func (func) – function used to map the IDs, accepts two taxon IDs

	Results:

	
	generator: generator expression of all IDs in map_ids to which taxon_id

	can be mapped.

Example

If mapping a taxon (Prevotella ruminicola) to Prevotella or
Clostridium, using as func mgkit.taxon.is_ancestor() and
taxonomy is an instance of mgkit.taxon.Taxonomy.

>>> import functools
>>> from mgkit.taxon import is_ancestor
>>> func = functools.partial(is_ancestor, taxonomy)
>>> list(map_taxon_by_id_list(839, [838, 1485], func))
[838]

 mgkit.mappings.utils module

mgkit.mappings.utils module

Utilities to map genes

	
mgkit.mappings.utils.count_genes_in_mapping(gene_lists, labels, mapping, normalise=False)

	Maps lists of ids to a mapping dictionary, returning a
pandas.DataFrame in which the rows are the labels provided and
the columns the categories to which the ids map. Each element of the matrix
label-category is the sum of all ids in the relative gene list that maps to
the specific category.

	Parameters

	
	gene_lists (iterable) – an iterable in which each element is a iterable
of ids that can be mapped to mapping

	labels (iterable) – an iterable of strings that defines the labels to
be used in the resulting rows in the pandas.DataFrame; must
have the same length as gene_lists

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form:
gene_id->[cat1, cat2, .., catN]

	normalise (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the counts are normalised over the total for
each row.

	Returns

	a pandas.DataFrame instance

	
mgkit.mappings.utils.group_annotation_by_mapping(annotations, mapping, attr='ko')

	Group annotations by mapping dictionary

	Parameters

	
	annotations (iterable) – iterable of gff.GFFKeg instances

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with mappings for the attribute requested

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute of the annotation to be used as key in mapping

	Return dict

	dictionary category->annotations

 mgkit.net package

mgkit.net package

Submodules

	mgkit.net.embl module

	mgkit.net.pfam module

	mgkit.net.uniprot module

	mgkit.net.utils module

Module contents

Package with functions/classes used in accessing network resources

 mgkit.net.embl module

mgkit.net.embl module

Access EMBL Services

	
exception mgkit.net.embl.EntryNotFound

	Bases: exceptions.Exception

Raised if at least one entry was not found by get_sequences_by_ids().
NOT_FOUND is used to check if any entry wasn’t downloaded.

	
exception mgkit.net.embl.NoEntryFound

	Bases: exceptions.Exception

Raised if no sequences where found by get_sequences_by_ids(), the
check is based on the NONE_FOUND variable.

	
mgkit.net.embl.datawarehouse_search(query, domain='sequence', result='sequence_release', display='fasta', offset=0, length=100000, contact=None, download='gzip', url='http://www.ebi.ac.uk/ena/data/warehouse/search?', fields=None)

	
Changed in version 0.2.3: added fields parameter to retrieve tab separated information

New in version 0.1.13.

Perform a datawarehouse search on EMBL dbs. Instructions on the query
language used to query the datawarehouse are available at this page [http://www.ebi.ac.uk/ena/about/browser#data_warehouse] with more details
about the databases domains at this page [http://www.ebi.ac.uk/ena/data/warehouse/usage]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query for the search enging

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – database domain to search

	result (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain result requested

	display (str [https://docs.python.org/3/library/stdtypes.html#str]) – display option (format to retrieve the entries)

	offset (int [https://docs.python.org/3/library/functions.html#int]) – the offset of the search results, defaults to the first

	length (int [https://docs.python.org/3/library/functions.html#int]) – number of results to retrieve at the specified offset
and the limit is automatically set a 100,000 records for query

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email of the user

	download (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of response. Gzip responses are automatically
decompressed

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – base URL for the resource

	fields (None [https://docs.python.org/3/library/constants.html#None], iterable) – must be an iterable of fields to be returned
if display is set to report

	Returns

	the raw request

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Examples

Querying EMBL for all sequences of type rRNA of the Clostridium
genus. Only from the EMBL release database in fasta format:

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'fasta'
>>> data = embl.datawarehouse_search(query, result=result,
... display=display)
>>> len(data)
35919

Each entry taxon_id from the same data can be retrieved using report
as the display option and fields an iterable of fields to just
(‘accession’, tax_id’):

>>> query = 'tax_tree(1485) AND mol_type="rRNA"'
>>> result = 'sequence_release'
>>> display = 'report'
>>> fields = ('accession', 'tax_id')
>>> data = embl.datawarehouse_search(query, result=result,
 display=display, fields=fields)

	
mgkit.net.embl.dbfetch(embl_ids, db='embl', contact=None, out_format='seqxml', num_req=10)

	
New in version 0.1.12.

Function that allows to use dbfetch service (REST). More information on the
output formats and the database available at the
service page [http://www.ebi.ac.uk/Tools/dbfetch/syntax.jsp]

	Parameters

	
	embl_ids (str [https://docs.python.org/3/library/stdtypes.html#str], iterable) – list or single sequence id to retrieve

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database from which retrieve the sequence data

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email contact to use as per EMBL guidlines

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format, depends on database

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of ids per request

	Returns

	a list with the results from each request sent. Each request sent
has a maximum number num_req of ids, so the number of items in the
list depends by the number of ids in embl_ids and the value of
num_req.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.net.embl.get_sequences_by_ids(embl_ids, contact=None, out_format='fasta', num_req=10, embl_db='embl_cds', strict=False)

	
Changed in version 0.3.4: removed compress as it’s bases on the requests package

Downloads entries using EBI REST API. It can download one entry at a
time or accept an iterable and all sequences will be downloaded in batches
of at most num_req.

It’s fairly general, so can be customised, from the DB used to the output
format: all batches are simply concatenate.

Note

There are some checks on the some errors reported by the EMBL api, but
not documented, in particular two errors, which are just reported as
text lines in the fasta file (the only one tested at this time).

The are two possible cases:

	if no entry was found NoEntryFound will be raised.

	if at least one entry wasn’t found:

	if strict is False (the default) the error will be just logged as a
debug message

	if strict is True EntryNotFound is raised

	Parameters

	
	embl_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – list of ids to download

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the entry

	num_req (int [https://docs.python.org/3/library/functions.html#int]) – number of entries to download with each request

	embl_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – db to which the ids refer to

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a check on the number of entries retrieved is
performed

	Returns

	the entries requested

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntryNotFound – if at least an entry was not found

	NoEntryFound – if NO entry were found

Warning

The number of sequences that can be downloaded at a time is 11, it
seems, since the returned sequences for each request was at most 11. I
didn’t find any mention of this in the API docs, but it may be a
restriction that’s temporary.

 mgkit.net.pfam module

mgkit.net.pfam module

New in version 0.2.3.

This module defines routine to access Pfam information using a
network connection

	
mgkit.net.pfam.get_pfam_families(key='id')

	
New in version 0.2.3.

Gets a dictionary with the accession/id/description of Pfam families
from Pfam. This list can be accessed using the URL:
http://pfam.xfam.org/families?output=text

The output is a tab separated file where the fields are:

	ACCESSION

	ID

	DESCRIPTION

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – if the value is id, the key of the dictionary is the ID,
otherwise ID swaps position with ACCESSION (the new key)

	Returns

	by default the function returns a dictionary that uses the ID
as key, while the value is a tuple (ACCESSION, DESCRIPTION). ID is the
default because the hmmer2gff - Convert HMMER output to GFF script output uses ID as gene_id
value when using the HMM provided by Pfam

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 mgkit.net.uniprot module

mgkit.net.uniprot module

Contains function and constants for Uniprot access

	
mgkit.net.uniprot.get_gene_info(gene_ids, columns, max_req=50, contact=None)

	
New in version 0.1.12.

Get informations about a list of genes. it uses query_uniprot() to
send the request and format the response in a dictionary.

	Parameters

	
	gene_ids (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – gene id(s) to get informations for

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of columns

	max_req (int [https://docs.python.org/3/library/functions.html#int]) – number of maximum gene_ids per request

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	dictionary where the keys are the gene_ids requested and the
values are dictionaries with the names of the columns requested as
keys and the corresponding values, which can be lists if the values are
are semicolon separated strings.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example

To get the taxonomy ids for some genes:

>>> uniprot.get_gene_info(['Q09575', 'Q8DQI6'], ['organism-id'])
{'Q09575': {'organism-id': '6239'}, 'Q8DQI6': {'organism-id': '171101'}}

	
mgkit.net.uniprot.get_gene_info_iter(gene_ids, columns, contact=None, max_req=50)

	
New in version 0.3.3.

Alternative function to get_gene_info(), returning an iterator to
avoid connections timeouts when updating a dictionary

This funciton’s parameters are the same as get_gene_info()

	
mgkit.net.uniprot.get_ko_to_eggnog_mappings(ko_ids, contact=None)

	
New in version 0.1.14.

It’s not possible to map in one go KO IDs to eggNOG IDs via the API in
Uniprot. This function uses query_uniprot() to get all Uniprot IDs
requested and the return a dictionary with all their eggNOG IDs they map
to.

	Parameters

	
	ko_ids (iterable) – an iterable of KO IDs

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	The format of the resulting dictionary is
ko_id -> {eggnog_id1, ..}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.get_mappings(entry_ids, db_from='ID', db_to='EMBL', out_format='tab', contact=None)

	Gets mapping of genes using Uniprot REST API. The db_from and db_to values
are the ones accepted by Uniprot API. The same applies to out_format, the
only processed formats are ‘list’, which returns a list of the mappings
(should be used with one gene only) and ‘tab’, which returns a dictionary
with the mapping. All other values returns a string with the newline
stripped.

	Parameters

	
	entry_ids (iterable) – iterable of ids to be mapped (there’s a limit)
to the maximum length of a HTTP request, so it should be less than 50

	db_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB for elements in entry_ids

	db_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that identify the DB to which map entry_ids

	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the mapping; ‘list’ and ‘tab’ are
processed

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	Returns

	tuple, dict or str depending on out_format value

	
mgkit.net.uniprot.get_sequences_by_ko(ko_id, taxonomy, contact=None, reviewed=True)

	Gets sequences from Uniprot, restricting to the taxon id passed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – KO id of the sequences to download

	taxonomy (int [https://docs.python.org/3/library/functions.html#int]) – id of the taxon

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested by
Uniprot API)

	reviewed (bool [https://docs.python.org/3/library/functions.html#bool]) – if the sequences requested must be reviewed

	Returns

	string with the fasta file downloaded

	
mgkit.net.uniprot.get_uniprot_ec_mappings(gene_ids, contact=None)

	
New in version 0.1.14.

Shortcut to download EC mapping of Uniprot IDs. Uses get_gene_info()
passing the correct column (ec).

	
mgkit.net.uniprot.ko_to_mapping(ko_id, query, columns, contact=None)

	Returns the mappings to the supplied KO. Can be used for any id, the
query format is free as well as the columns returned. The only
restriction is using a tab format, that is parsed.

	Parameters

	
	ko_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – id used in the query

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query passed to the Uniprot API, ko_id is replaced
using str.format()

	column (str [https://docs.python.org/3/library/stdtypes.html#str]) – column used in the results table used to map the ids

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

Note

each mapping in the column is separated by a ;

	
mgkit.net.uniprot.parse_uniprot_response(data, simple=True)

	
New in version 0.1.12.

Parses raw response from a Uniprot query (tab format only) from functions
like query_uniprot() into a dictionary. It requires that the first
column is the entry id (or any other unique id).

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – string response from Uniprot

	simple (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the number of columns is 1, the dictionary
returned has a simplified structure

	Returns

	The format of the resulting dictionary is
entry_id -> {column1 -> value, column2 -> value, ..} unless there’s
only one column and simple is True, in which case the value is
equal to the value of the only column.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.net.uniprot.query_uniprot(query, columns=None, format='tab', limit=None, contact=None, baseurl='http://www.uniprot.org/uniprot/')

	
New in version 0.1.12.

Changed in version 0.1.13: added baseurl and made columns a default argument

Queries Uniprot, returning the raw response in tbe format specified. More
informations at the page [http://www.uniprot.org/faq/28]

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query to submit, as put in the input box

	columns (None [https://docs.python.org/3/library/constants.html#None], iterable) – list of columns to return

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – response format

	limit (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – number of entries to return or None to request all
entries

	contact (str [https://docs.python.org/3/library/stdtypes.html#str]) – email address to be passed in the query (requested
Uniprot API)

	baseurl (str [https://docs.python.org/3/library/stdtypes.html#str]) – base url for the REST API, can be either
UNIPROT_GET or UNIPROT_TAXONOMY

	Returns

	raw response from the query

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

To get the taxonomy ids for some genes:

>>> uniprot.query_uniprot('Q09575 OR Q8DQI6', ['id', 'organism-id'])
'Entry\tOrganism ID\nQ8DQI6\t171101\nQ09575\t6239\n'

Warning

because of limits in the length of URLs, it’s advised to limit the
length of the query string.

 mgkit.net.utils module

mgkit.net.utils module

Utility functions for the network package

	
mgkit.net.utils.url_open(url, data=None, headers=None, agent=None, get=True, stream=False)

	
Changed in version 0.3.4: now uses requests

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – parameters to pass to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – any additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str]) – user agent to use

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the request is a GET, False for POST

	stream (bool [https://docs.python.org/3/library/functions.html#bool]) – returns an iterator to stream over

	url – url to request

	data – data to add to the request

	compress (bool [https://docs.python.org/3/library/functions.html#bool]) – if the response should be compressed

	agent – if supplied, the ‘User-Agent’ header we’ll be added to
the request

	Returns

	the response handle

	
mgkit.net.utils.url_read(url, data=None, agent=None, headers=None, get=True)

	
Changed in version 0.3.4: now uses requests, removed compressed and added headers, get

Opens an URL and reads the

Wrapper of url_open() which reads the full response

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – data to add to the request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – additional headers

	agent (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – if supplied, the ‘User-Agent’ header we’ll be
added to the request

	get (bool [https://docs.python.org/3/library/functions.html#bool]) – uses a GET operation if True, POST if False

	Returns

	the response data

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 mgkit.plots package

mgkit.plots package

Submodules

	mgkit.plots.abund module

	mgkit.plots.boxplot module

	mgkit.plots.colors module

	mgkit.plots.heatmap module

	mgkit.plots.utils module

Module contents

New in version 0.1.14.

 mgkit.plots.abund module

mgkit.plots.abund module

New in version 0.1.15.

Module to plot relative abundances in a 1D or 3D projection

	
mgkit.plots.abund.col_func_firstel(key, colors=None)

	

	
mgkit.plots.abund.col_func_name(key, func=None, colors=None)

	

	
mgkit.plots.abund.col_func_taxon(taxon_id, taxonomy, anc_ids, colpal)

	

	
mgkit.plots.abund.draw_1d_grid(ax, labels=['LAM', 'SAM'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a 1D axis, to display propotions.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.draw_axis_internal_triangle(ax, color='r', linewidth=2.0)

	
New in version 0.2.5.

Draws a triangle that indicates the 50% limit for all 3 samples

	Parameters

	
	ax – axis to use

	color (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – color used to draw the triangle

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width

	
mgkit.plots.abund.draw_circles(ax, data, col_func=<function col_func_name>, csize=200, alpha=0.5, sizescale=None, order=None, linewidths=0.0, edgecolor='none')

	
Changed in version 0.2.0: changed internals and added return value

Draws a scatter plot over either a planar-simplex projection, if the number
of coordinates is 3, or in a 1D axis.

If the number of coordinates is 3, project_point() is used to project
the point in 2 coordinates. The coordinates are converted in proportions
internally.

	Parameters

	
	ax – axis to plot on

	data (pandas.DataFrame) – a DataFrame with 2 for a 1D plot or 3 columns
for a planar-simplex

	col_func (func) – a function that accept a parameter, an element of the
DataFrame index and returns a colour for it

	csize (int [https://docs.python.org/3/library/functions.html#int]) – the base size of the circles

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – transparency of the circles, between 0 and 1 included

	sizescale (None [https://docs.python.org/3/library/constants.html#None], pandas.Series) – a Series or dictionary with the same
elements as the Index of data, whose values are the size factors
that are multiplied to csize. If None, the size of the
circles is equal to csize

	order (None [https://docs.python.org/3/library/constants.html#None], iterable) – iterable with the elements of data Index, to
specify the order in which the circles must be plotted. If None,
the order is the same as data.index

	linewidths (float [https://docs.python.org/3/library/functions.html#float]) – width of the circle line

	edgecolor (str [https://docs.python.org/3/library/stdtypes.html#str]) – color of the circle line

	Returns

	the return value of matplotlib scatter

	Return type

	PathCollection

Note

To not have circle lines, edgecolor must be ‘none’ and
linewidths equal 0

	
mgkit.plots.abund.draw_triangle_grid(ax, labels=['LAM', 'SAM', 'EAM'], linewidth=1.0, styles=['-', ':', '--'], fontsize=22)

	
Changed in version 0.2.0: reworked internals and changed defaults

Draws a triangle as axes, for a planar-simplex projection.

	Parameters

	
	ax – an axis instance

	labels (iterable) – list of string to be put for the axes

	styles (None [https://docs.python.org/3/library/constants.html#None], iterable) – either None for solid lines or matplotlib
line markers. These are in sync between the internal lines and
the axes.

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – line width for the axes, the internal lines are
equal to 0.75 * linewidth

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – font size for the labels, the tick font size is
equal to 0.75 * fontsize

	
mgkit.plots.abund.project_point(point)

	Project a tuple containing coordinates (i.e. x, y, z) to planar-simplex.

	Parameters

	point (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – contains the three coordinates to project

	Returns

	the projected point in a planar-simplex

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

 mgkit.plots.boxplot module

mgkit.plots.boxplot module

New in version 0.1.14.

Code related to boxplots

	
mgkit.plots.boxplot.add_values_to_boxplot(dataframe, ax, plot_data, plot_order, data_colours=None, alpha=0.5, s=80, marker='o', linewidth=0.01, box_vert=False)

	
New in version 0.1.13.

Changed in version 0.1.14: added box_vert parameter

Changed in version 0.1.16: changed default value for linewidth

Adds the values of a dataframe used in boxplot_dataframe() to the
plot. linewidth must be higher than 0 if a marker like | is used.

A list of markers is available at
this page [http://matplotlib.org/api/markers_api.html]

Warning

Contrary to boxplot_dataframe(), the boxplot default is
horizontal (box_vert). The default will change in a later version.

	Parameters

	
	dataframe – dataframe with the values to plot

	ax – an axis instance

	plot_data – return value from boxplot_dataframe()

	plot_order (iterable) – row order used to plot the boxes

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – colors used for the values

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – alpha value for the colour

	s (int [https://docs.python.org/3/library/functions.html#int]) – size of the marker drawn

	marker (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the accepted matplotlib markers

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – width of the line used to draw the marker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the original boxplot is vertical or not

	
mgkit.plots.boxplot.add_significance_to_boxplot(sign_indices, ax, pos, box_vert=True, fontsize=16)

	
New in version 0.1.16.

Add significance groups to boxplots

	Parameters

	
	sign_indices (iterable) – iterable in which each element is a tuple;
each element of the tuple is the numerical index of the position of
the significant boxplot

	ax – an axis instance

	pos (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the 2 values are the coordinates for the top line, and the
the lowest bound for the whisker

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if the boxplot is vertical

	fontsize (float [https://docs.python.org/3/library/functions.html#float]) – size for the * (star)

	
mgkit.plots.boxplot.boxplot_dataframe_multindex(dataframe, axes, plot_order=None, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True)

	
New in version 0.1.13.

Todo

documentation

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An axes object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	axes – an axes instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X axes

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	Returns

	the plot data same as matplotlib boxplot function

	
mgkit.plots.boxplot.boxplot_dataframe(dataframe, plot_order, ax, label_map=None, fonts=None, fill_box=True, colours=None, data_colours=None, box_vert=True, widths=0.5)

	
New in version 0.1.7: To move from an all-in-one drawing to a more modular one.

Changed in version 0.1.13: added box_vert parameter

Changed in version 0.1.16: added widths parameter

The function draws a series of boxplots from a DataFrame object, whose
order is directed by the iterable plot_order. The columns of each DataFrame
row contains the values for each boxplot. An ax object is needed.

	Parameters

	
	dataframe – dataframe to plot

	plot_order (iterable) – row order used to plot the boxes

	ax – an axis instance

	label_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a map that converts the items in plot_order to a
label used on the plot X ax

	fonts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for x axis labels,
DEFAULT_BOXPLOT_FONTCONF is used by default

	fill_box (bool [https://docs.python.org/3/library/functions.html#bool]) – if True each box is filled with the same colour of
its outline

	colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with properties for each boxplot if
data_colours is None, whi overrides box, whiskers and fliers. Defaults
to DEFAULT_BOXPLOT_COLOURS

	data_colours (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of colours for each boxplot, a set of
colours can be obtained using func:map_taxon_to_colours

	box_vert (bool [https://docs.python.org/3/library/functions.html#bool]) – if False the boxplots are drawn horizontally

	widths (float [https://docs.python.org/3/library/functions.html#float]) – width (scalar or array) of the boxplots width(s)

	Returns

	the plot data; same as matplotlib boxplot function

 mgkit.plots.colors module

mgkit.plots.colors module

New in version 0.1.14.

Contains code related to colour

	
mgkit.plots.colors.float_to_hex_color(r, g, b)

	
New in version 0.1.14.

Converts RGB float values to Hexadecimal value string

	
mgkit.plots.colors.palette_float_to_hex(palette)

	
New in version 0.1.16.

Applies float_to_hex_color() to an iterable of colors

 mgkit.plots.heatmap module

mgkit.plots.heatmap module

New in version 0.1.14.

Code related to heatmaps.

	
mgkit.plots.heatmap.baseheatmap(data, ax, norm=None, cmap=None, xticks=None, yticks=None, fontsize=18, meshopts=None, annot=False, annotopts=None)

	
Changed in version 0.2.3: added annot and annot_args arguments

A basic heatmap using matplotlib.pyplot.pcolormesh(). It expect a
pandas.DataFrame.

Note

Rows a plot bottom to up, while the columns left to right. Change the
order of the DataFrame if needed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	xticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_xticklabels

	yticks (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with additional options to pass to
set_yticklabels

	fontsize (int [https://docs.python.org/3/library/functions.html#int]) – font size to use for the labels

	meshopts (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to
matplotlib.pyplot.pcolormesh()

	annot (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the values of the matrix will be added

	annot_args (None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the options for the
annotations. The option format is a function that returns the
formatted number, defaults to a number with no decimal part

	Returns

	the return value of
matplotlib.pyplot.pcolormesh()

	Return type

	matplotlib.collections.QuadMesh

	
mgkit.plots.heatmap.grouped_spine(groups, labels, ax, which='y', spine='right', spine_opts=None, start=0)

	
Changed in version 0.2.0: added va, ha keys to spine_opts, changed the label positioning

Changed in version 0.2.5: added start parameter

Changes the spine of an heatmap axis given the groups of labels.

Note

It should work for any plot, but was not tested

	Parameters

	
	groups (iterable) – a nested list where each is element is a list
containing the labels that belong to that group.

	labels (iterable) – an iterable with the labels of the groups. Needs to
be in the same order as groups

	ax – axis to use (same as heatmap)

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) – to specify the axis, either x or y

	spine (str [https://docs.python.org/3/library/stdtypes.html#str]) – position of the spine. if which is x accepted values
are top and bottom, if which is y left and right are
accepted

	spine_opts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional options to pass to the spine class

	start (int [https://docs.python.org/3/library/functions.html#int]) – the start coordinate for the grouped spine. Defaults to 0

	
mgkit.plots.heatmap.dendrogram(data, ax, method='complete', orientation='top', use_dist=True, dist_func=<function pdist>)

	
Changed in version 0.1.16: added use_dist and dist_func parameters

Plots a dendrogram of the clustered rows of the given matrix; if the
columns are to be clustered, the transposed matrix needs to be passed.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	ax – axes to use

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – clustering method used, internally
scipy.cluster.hierarchy.linkage() is used.

	orientation (str [https://docs.python.org/3/library/stdtypes.html#str]) – direction for the plot. top, bottom, left and
right are accepted; top will draw the leaves at the bottom.

	use_dist (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the function dist_func will be applied to
data to get a distance matrix

	dist_func (func) – distance function to be used

	Returns

	The dendrogram plotted, as returned by
scipy.cluster.hierarchy.dendrogram()

	
mgkit.plots.heatmap.heatmap_clustered(data, figsize=(10, 5), cmap=None, norm=None)

	Plots a heatmap clustered on both rows and columns.

	Parameters

	
	data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – passed to mgkit.plots.utils.get_grid_figure()

	cmap (None [https://docs.python.org/3/library/constants.html#None], matplotlib.colors.ListedColormap) – color map to use

	norm – if needed, matplotlib.colors.BoundaryNorm or
matplotlib.colors.Normalize can be used to fine tune the
colors

 mgkit.plots.utils module

mgkit.plots.utils module

New in version 0.1.14.

Misc code

	
mgkit.plots.utils.get_grid_figure(rows, cols, dpi=300, figsize=(10, 20), **kwd)

	
New in version 0.1.13.

Simple wrapper to init a GridSpec figure

	Parameters

	
	rows (int [https://docs.python.org/3/library/functions.html#int]) – number of rows

	columns (int [https://docs.python.org/3/library/functions.html#int]) – number of columns

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.get_single_figure(dpi=300, figsize=(10, 20), aspect='auto')

	
Changed in version 0.1.14: added aspect parameter

Simple wrapper to init a single figure

	Parameters

	
	dpi (int [https://docs.python.org/3/library/functions.html#int]) – dpi used for the figure

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – size of the figure in inches

	aspect (str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]) – aspect ratio to be passed to figure.add_subplot

	Returns

	the figure and axes objects

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.plots.utils.legend_patches(labels, colors)

	
New in version 0.3.1.

Makes handles (using matplotlib Patch) that can be passed to the legend
method of a matplotlib axes instance

	Parameters

	
	labels (iterable) – iterable that yields a label

	colors (iterable) – iterable that yields a valid matplotlib color

	Returns

	list of patches that can be passed to the handles parameter in
the ax.legend method

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 mgkit.snps package

mgkit.snps package

Submodules

	mgkit.snps.classes module

	mgkit.snps.conv_func module

	mgkit.snps.filter module

	mgkit.snps.funcs module

	mgkit.snps.mapper module

Module contents

SNPs data package

 mgkit.snps.classes module

mgkit.snps.classes module

Manage SNP data.

	
class mgkit.snps.classes.GeneSNP(gene_id='', taxon_id=0, exp_syn=0, exp_nonsyn=0, coverage=None, snps=None, uid=None, json_data=None)

	Bases: mgkit.snps.classes.RatioMixIn

New in version 0.1.13.

Class defining gene and synonymous/non-synonymous SNPs.

It defines background synonymous/non-synonymous attributes and only has a
method right now, which calculate pN/pS ratio. The method is added through
a mixin object, so the ratio can be customised and be shared with the old
implementation.

	
uid

	unique id for the isoform (to be referenced in a GFF file)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
gene_id

	gene id

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
taxon_id

	gene taxon

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_syn

	expected synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
exp_nonsyn

	expected non-synonymous changes

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
coverage

	gene coverage

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
snps

	list of SNPs associated with the gene, each element is a
tuple with the position (relative to the gene start), the second is
the nucleotidic change and the third is the aa SNP type as defined
by SNPType.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

The main difference with the GeneSyn is that all snps are kept
and syn and nonsyn are not attributes but properties that return
the count of synonymous and non-synonymous SNPs in the snps list.

Warning

This class uses more memory than GeneSyn because it doesn’t
use __slots__, it may be changed in later versions.

	
add(other)

	Inplace addition of another instance values. No check for them being
the same gene/taxon, it’s up to the user to check that they can be
added together.

	Parameters

	other – instance of GeneSyn to add

	
add_snp(position, change, snp_type=<SNPType.unknown: 0>)

	Adds a SNP to the list

	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – SNP position, relative to the gene start

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotidic change

	snp_type (enum) – one of the values defined in SNPType

	
coverage = None

	

	
exp_nonsyn = None

	

	
exp_syn = None

	

	
from_json(data)

	Instantiate the instance with values from a json definition

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – json representation, as returned by
GeneSNP.to_json()

	
gene_id = None

	

	
nonsyn

	Returns the expected non-synonymous changes

	
snps = None

	

	
syn

	Returns the expected synonymous changes

	
taxon_id = None

	

	
to_json()

	Returns a json definition of the instance

	Returns

	json representation of the instance

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
uid = None

	

	
class mgkit.snps.classes.RatioMixIn

	Bases: future.types.newobject.newobject

	
calc_ratio(haplotypes=False)

	
Changed in version 0.2.2: split the function to handle flag_value in another method

Calculate \(\frac {pN}{pS}\) for the gene.

(1)\[\frac {pN}{pS} = \frac{ ^{oN}/_{eN}}{ ^{oS}/_{eS}}\]

WHere:

	oN (number of non-synonymous - nonsyn)

	eN (expected number of non-synonymous - exp_nonsyn)

	oS (number of synonymous - syn)

	eS (expected number of synonymous - exp_syn)

	Parameters

	
	flag_value (bool [https://docs.python.org/3/library/functions.html#bool]) – when there’s no way to calculate the ratio, the
possible cases will be flagged with a negative number. This
allows to make substitutions for these values

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, coverage information is not used,
because the SNPs are assumed to come from an alignment that has
sequences having haplotypes

	Returns

	the \(\frac {pN}{pS}\) for the gene.

Note

Because pN or pS can be 0, and the return value would be NaN,
we take in account some special cases. The default return value
in this cases is numpy.nan.

	Both synonymous and non-synonymous values are 0:

	if both the syn and nonsyn attributes are 0 but there’s
coverage for this gene, we return a 0, as there’s no
evolution in this gene. Before, the coverage was checked by
this method against either the passed min_cov parameter
that was equal to MIN_COV. Now the case is for the
user to check the coverage and functions in
mgkit.snps.conv_func do that. If enough coverage was
achieved, the haplotypes parameter can be used to return a
0

All other cases return a NaN value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calc_ratio_flag()

	
New in version 0.2.2.

Handles cases where it’s important to flag the returned value, as
explained in GeneSNP.calc_ratio(), and when the both the number
of synonymous and non-synonymous is greater than 0, the pN/pS value is
returned.

	
	The number of non-synonymous is greater than 0 but the number of

	
synonymous is 0:

	if flag_value is True, the returned value is -1

	The number of synonymous is greater than 0 but the number of
non-synonymous is 0:

	if flag_value is True, the returned value is -2

	\(oS\)

	\(oN\)

	return value

	>0

	>0

	pN/pS

	0

	0

	-3

	>0

	0

	-1

	0

	>0

	-2

	
class mgkit.snps.classes.SNPType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

New in version 0.1.13.

Enum that defines SNP types. Supported at the moment:

	unknown = 0

	syn (synonymous) = 1

	nonsyn (non-synonymous) = 2

Note

No support is planned at the moment to support indel mutations

	
nonsyn = 2

	

	
syn = 1

	

	
unknown = 0

	

 mgkit.snps.conv_func module

mgkit.snps.conv_func module

Wappers to use some of the general function of the snps package
in a simpler way.

	
mgkit.snps.conv_func.get_full_dataframe(snp_data, taxonomy, min_num=3, index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is None (gene-taxon)

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_map_dataframe(snp_data, taxonomy, gene_map, min_num=3, index_type='gene', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_gene_taxon_dataframe(snp_data, taxonomy, gene_map, min_num=3, rank='genus', index_type=None, filters=None)

	
New in version 0.1.12.

Changed in version 0.2.2: added filters argument

Todo

edit docstring

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the gene map.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
gene_func parameter map_gene_id().

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of mapping for the gene_ids in in SNPs
data

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘gene’

	Return type

	DataFrame

	
mgkit.snps.conv_func.get_rank_dataframe(snp_data, taxonomy, min_num=3, rank='order', index_type='taxon', filters=None)

	
New in version 0.1.11.

Changed in version 0.2.2: added filters argument

Returns a DataFrame with the pN/pS of the given
SNPs data, mapping all taxa to the specified rank. Higher taxa won’t
be included.

Shortcut for using combine_sample_snps(), using
filters from get_default_filters() and as
taxon_func parameter map_taxon_id_to_rank(),
with include_higher equals to False

	Parameters

	
	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary sample->GeneSyn of SNPs data

	taxonomy – Uniprot Taxonomy

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of samples in which a valid pN/pS
is found

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to map. Valid ranks are found in
mgkit.taxon.TAXON_RANKS

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – type of index to return

	filters (iterable) – list of filters to apply, otherwise uses the
default filters

	Returns

	pandas.DataFrame of pN/pS values. The index type
is ‘taxon’

	Return type

	DataFrame

 mgkit.snps.filter module

mgkit.snps.filter module

SNPs filtering functions

	
mgkit.snps.filter.filter_genesyn_by_coverage(gene_syn, min_cov=None)

	Checks if the coverage of the provided gene_syn is at least min_cov

	Parameters

	
	gene_syn – GeneSyn instance

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage allowed (included)

	Returns

	True if the gene has enough coverage

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if min_cov is None

	
mgkit.snps.filter.filter_genesyn_by_gene_id(gene_syn, gene_ids=None, exclude=False, id_func=None)

	Checks if the gene_id is listed in the filter_list.

	Parameters

	
	gene_syn – GeneSyn instance

	gene_ids (iterable) – list of gene IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if gene_ids is None

	
mgkit.snps.filter.filter_genesyn_by_taxon_id(gene_syn, taxonomy=None, filter_list=None, exclude=False, func=None)

	Checks if the taxon_id attribute of gene_syn is the filter_list.
Excelude reverses the result. If func is supplied, it’s used to traverse
the taxonomy.

	Parameters

	
	gene_syn – GeneSyn instance

	taxonomy – a valid taxonomy (instance of
Taxonomy)

	filter_list (iterable) – list of taxon IDs to include/exclude

	exclude (bool [https://docs.python.org/3/library/functions.html#bool]) – if the filter is reversed

	func (func) – is_ancestor()

	Returns

	if the exclude is True, the gene_id must appear in the gene_ids,
if False, returns True only if gene_id is NOT in gene_ids.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	FilterFails – if filter_list is None or taxonomy is None and func is not
None

	
mgkit.snps.filter.get_default_filters(taxonomy, **kwargs)

	Retuns a list of filters that are used by default. it needs a valid
taxonomy and gets the default arguments from
mgkit.consts.DEFAULT_SNP_FILTER.

	
mgkit.snps.filter.pipe_filters(iterable, *funcs)

	Pipes a list of filter to iterable, using the python ifilter function in
the itertools module. Now using builtins.filter

 mgkit.snps.funcs module

mgkit.snps.funcs module

Functions used in SNPs manipulation

	
mgkit.snps.funcs.build_rank_matrix(dataframe, taxonomy=None, taxon_rank=None)

	Make a rank matrix from a pandas.Series with the pN/pS values of a
dataset.

	Parameters

	
	dataframe – pandas.Series instance with a MultiIndex
(gene-taxon)

	taxonomy – taxon.Taxonomy instance with the full
taxonomy

	taxon_rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank to limit the specifity of the taxa
included

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.combine_sample_snps(snps_data, min_num, filters, index_type=None, gene_func=None, taxon_func=None, use_uid=False, flag_values=False, haplotypes=True, store_uids=False)

	
Changed in version 0.2.2: added use_uid argument

Changed in version 0.3.1: added haplotypes

Changed in version 0.4.0: added store_uids

Combine a dictionary sample->gene_index->GeneSyn into a
pandas.DataFrame. The dictionary is first filtered with the
functions in filters, mapped to different taxa and genes using
taxon_func and gene_func respectively. The returned DataFrame is also
filtered for each row having at least a min_num of not NaN values.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the GeneSNP instances

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – the minimum number of not NaN values necessary in a row
to be returned

	filters (iterable) – iterable containing filter functions, a list can be
found in mgkit.snps.filter

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – if None, each row index for the DataFrame
will be a MultiIndex with gene and taxon as elements. If the
equals ‘gene’, the row index will be gene based and if ‘taxon’ will
be taxon based

	gene_func (func) – a function to map a gene_id to a gene_map. See
mapper.map_gene_id() for an example

	taxon_func (func) – a function to map a taxon_id to a list of IDs. See
mapper.map_taxon_id_to_rank or
mapper.map_taxon_id_to_ancestor for examples

	use_uid (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses the GeneSNP.uid instead of
GeneSNP.gene_id

	flag_values (bool [https://docs.python.org/3/library/functions.html#bool]) – if True,
mgkit.snps.classes.GeneSNP.calc_ratio_flag() will be used,
instead of mgkit.snps.classes.GeneSNP.calc_ratio()

	haplotypes (bool [https://docs.python.org/3/library/functions.html#bool]) – if flag_values is False, and haplotypes is
True, the 0/0 case will be returned as 0 instead of NaN

	store_uids (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a dictionary with the uid used for each
cell (e.g. gene/taxon/sample)

	Returns

	pandas.DataFrame with the pN/pS values for the
input SNPs, with the columns being the samples. if store_uids is True
the return value is a tuple (DataFrame, dict)

	Return type

	DataFrame

	
mgkit.snps.funcs.flat_sample_snps(snps_data, min_cov)

	
New in version 0.1.11.

Adds all the values of a gene across all samples into one instance of
classes.GeneSNP, giving the average gene among all samples.

	Parameters

	
	snps_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the instances of
classes.GeneSNP

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minimum coverage required for the each instance to be
added

	Returns

	the dictionary with only one key (all_samples), which can be
used with combine_sample_snps()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.snps.funcs.group_rank_matrix(dataframe, gene_map)

	Group a rank matrix using a mapping, in the form map_id->ko_ids.

	Parameters

	
	dataframe – instance of a rank matrix from build_rank_matrix()

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the mapping

	Returns

	pandas.DataFrame instance

	
mgkit.snps.funcs.order_ratios(ratios, aggr_func=<function median>, reverse=False, key_filter=None)

	Given a dictionary of id->iterable where iterable contains the values of
interest, the function uses aggr_func to sort (ascending by default) it and
return a list with the key in the sorted order.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary instance id->iterable

	aggr_func (function) – any function returning a value that can be used
as a key in sorting

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – the default is ascending sorting (False), set to True
to reverse key_filter: list of keys to use for ordering, if None, every
key is used

	Returns

	iterable with the sort order

	
mgkit.snps.funcs.significance_test(dataframe, taxon_id1, taxon_id2, test_func=<function ks_2samp>)

	
New in version 0.1.11.

Perform a statistical test on each gene distribution in two different taxa.

For each gene common to the two taxa, the distribution of values in all
samples (columns) between the two specified taxa is tested.

	Parameters

	
	dataframe – pandas.DataFrame instance

	taxon_id1 – the first taxon ID

	taxon_id2 – the second taxon ID

	test_func – function used to test,
defaults to scipy.stats.ks_2samp()

	Returns

	with all pvalues from the tests

	Return type

	pandas.Series

	
mgkit.snps.funcs.write_sign_genes_table(out_file, dataframe, sign_genes, taxonomy, gene_names=None)

	Write a table with the list of significant genes found in a dataframe, the
significant gene list is the result of
wilcoxon_pairwise_test_dataframe().

	Out_file

	the file name or file object to write the file

	Dataframe

	the dataframe which was tested for significant genes

	Sign_genes

	gene list that are significant

	Taxonomy

	taxonomy object

	Gene_names

	dictionary with the name of the the genes. Optional

 mgkit.snps.mapper module

mgkit.snps.mapper module

Mapping functions for SNPs - Should be move into an ‘iterator’ package to
be shared with other modules?

	
mgkit.snps.mapper.map_gene_id(gene_id, gene_map=None)

	Returns an iterator for all the values of a dictionary. if gene_id is not
found in the gene_map, an empty iterator is returned.

	Parameters

	
	gene_id (immutable) – gene_id or any other dictionary key.

	gene_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary in the form key->[v1, v2, .. vN]

	Returns

	iterator (empty if gene_id is not in gene_map) with the
values

	Return type

	generator

	
mgkit.snps.mapper.map_taxon_id_to_ancestor(taxon_id, anc_ids=None, func=None)

	Given a taxon_id and a list of ancestors IDs, returns an iterator with the
IDs that are ancestors of taxon_id.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	anc_ids (iterable) – taxon IDs to check for ancestry

	func – function used to check for ancestry - partial function for
mgkit.taxon.is_ancestor() that accepts taxon_id and anc_id

	Returns

	iterator with the values or empty

	Return type

	generator

Note

check mgkit.filter.taxon.filter_taxon_by_id_list() for examples
on using func

	
mgkit.snps.mapper.map_taxon_id_to_rank(taxon_id, rank=None, taxonomy=None, include_higher=False)

	Given a taxon_id, returns an iterator with only the element that correspond
to the requested rank. If the taxon returned by
mgkit.taxon.Taxonomy.get_ranked_taxon has a different rank
than requested, the iterator will be empty if include_higher is False
and the returned taxon ID if True.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon ID to be mapped

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – taxon rank used (mgkit.taxon.TAXON_RANKS)

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if a rank higher than the one
requested is to be returned

	Returns

	iterator with the values or empty

	Return type

	generator

 mgkit.utils package

mgkit.utils package

Submodules

	mgkit.utils.common module

	mgkit.utils.dictionary module

	mgkit.utils.sequence module

	mgkit.utils.trans_tables module

Module contents

Package that contains utility functions/classes

 mgkit.utils.common module

mgkit.utils.common module

Utility functions

	
mgkit.utils.common.apply_func_window(func, data, window, step=0)

	

	
mgkit.utils.common.average_length(a1s, a1e, a2s, a2e)

	Given two sets of coordinates, a1 and a2, returns the average length.

	Parameters

	
	a1s (int [https://docs.python.org/3/library/functions.html#int]) – a1 leftmost number

	a1e (int [https://docs.python.org/3/library/functions.html#int]) – a1 rightmost number

	a2s (int [https://docs.python.org/3/library/functions.html#int]) – a2 leftmost number

	a2e (int [https://docs.python.org/3/library/functions.html#int]) – a2 rightmost number

	Return float

	the average length

	
mgkit.utils.common.between(pos, start, end)

	Tests if a number is between two others

	Parameters

	
	pos (int [https://docs.python.org/3/library/functions.html#int]) – number to test

	start (int [https://docs.python.org/3/library/functions.html#int]) – leftmost number

	end (int [https://docs.python.org/3/library/functions.html#int]) – rightmost number

	Return bool

	if the number is between start and end

	
mgkit.utils.common.complement_ranges(intervals, end=None)

	
New in version 0.3.1.

Perform a complement operation of the list of intervals, i.e. returning the
ranges (tuples) that are not included in the list of intervals.
union_ranges() is first called on the intervals.

Note

the end parameter is there for cases where the ranges passed don’t
cover the whole space. Assuming a list of ranges from annotations on a
nucleotidic sequence, if the last range doesn’t include the last
position of the sequence, passing end equal to the length of the
sequence will make the function include a last range that includes it

	Parameters

	
	intervals (intervals) – iterable where each element is a closed range
(tuple)

	end (int [https://docs.python.org/3/library/functions.html#int]) – if the end of the complement intervals is supposed to be
outside the last range.

	Returns

	the list of intervals that complement the ones passed.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> complement_ranges([(1, 10), (11, 20), (25, 30)], end=100)
[(21, 24), (31, 100)]
>>> complement_ranges([(1, 10), (11, 20), (25, 30)])
[(21, 24)]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)])
[]
>>> complement_ranges([(0, 2), (3, 17), (18, 20)], end=100)
[(21, 100)]

	
mgkit.utils.common.deprecated(func)

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.

from https://wiki.python.org/moin/PythonDecoratorLibrary

	
mgkit.utils.common.range_intersect(start1, end1, start2, end2)

	
New in version 0.1.13.

Given two ranges in the form (start, end), it returns the range
that is the intersection of the two.

	Parameters

	
	start1 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the first range

	end1 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the first range

	start2 (int [https://docs.python.org/3/library/functions.html#int]) – start position for the second range

	end2 (int [https://docs.python.org/3/library/functions.html#int]) – end position for the second range

	Returns

	returns a tuple with the start and end position for
the intersection of the two ranges, or None if the intersection is
empty

	Return type

	(None [https://docs.python.org/3/library/constants.html#None], tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	
mgkit.utils.common.range_substract(start1, end1, start2, end2)

	

	
mgkit.utils.common.ranges_length(ranges)

	
New in version 0.1.12.

Given an iterable where each element is a range, a tuple whose elements
are numbers with the first being less than or equal to the second, the
function sums the lengths of all ranges.

Warning

it’s supposed to be used on intervals that were first passed to
functions like union_ranges(). If values overlap, there the sum
will be wrong

	Parameters

	ranges (iterable) – each element is a tuple like (1, 10)

	Returns

	sum of all ranges lengths

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mgkit.utils.common.union_range(start1, end1, start2, end2)

	
New in version 0.1.12.

Changed in version 0.3.1: changed behaviour, since the intervals are meant to be closed

If two numeric ranges overlap, it returns the new range, otherwise None is
returned. Works on both int and float numbers, even mixed.

	Parameters

	
	start1 (numeric) – start of range 1

	end1 (numeric) – end of range 1

	start2 (numeric) – start of range 2

	end2 (numeric) – end of range 2

	Returns

	union of the ranges or None if the ranges don’t
overlap

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or None [https://docs.python.org/3/library/constants.html#None])

Example

>>> union_range(10, 13, 1, 10)
(1, 13)
>>> union_range(1, 10, 11, 13)
(1, 13)
>>> union_range(1, 10, 12, 13)
None

	
mgkit.utils.common.union_ranges(intervals)

	
New in version 0.3.1.

From a list of ranges, assumed to be closed, performs a union of all
elements.

	Parameters

	intervals (intervals) – iterable where each element is a closed range
(tuple)

	Returns

	the list of ranges that are the union of all elements passed

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 17), (18, 20)])
[(1, 20)]
>>> union_ranges([(1, 2), (3, 7), (6, 12), (9, 14), (18, 20)])
[(1, 14), (18, 20)]

 mgkit.utils.dictionary module

mgkit.utils.dictionary module

Dictionary utils

	
class mgkit.utils.dictionary.HDFDict(file_name, table, cast=<type 'int'>, cache=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Changed in version 0.3.3: added cache in __init__

New in version 0.3.1.

Used a table in a HDFStore (from pandas) as a dictionary. The table must be
indexed to perform well. Read only.

Note

the dictionary cannot be modified and exception:ValueError will be
raised if the table is not in the file

	
mgkit.utils.dictionary.apply_func_to_values(dictionary, func)

	
New in version 0.1.12.

Assuming a dictionary whose values are iterables, func is applied to each
element of the iterable, retuning a set of all transformed elements.

	Parameters

	
	dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are iterables

	func (func) – function to apply to the dictionary values

	Returns

	dictionary with transformed values

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class mgkit.utils.dictionary.cache_dict_file(iterator, skip_lines=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.3.0.

Used to cache the result of a function that yields a tuple (key and value).
If the value is found in the internal dictionary (as the class behave), the
correspondent value is returned, otherwise the iterator is advanced until
the key is found.

Example

>>> from mgkit.io.blast import parse_accession_taxa_table
>>> i = parse_accession_taxa_table('nucl_gb.accession2taxid.gz', key=0)
>>> d = cache_dict_file(i)
>>> d['AH001684']
4400

	
next()

	

	
mgkit.utils.dictionary.combine_dict(keydict, valuedict)

	Combine two dictionaries when the values of keydict are iterables. The
combined dictionary has the same keys as keydict and the its values are
sets containing all the values associated to keydict values in valuedict.

key1 -> [v1, v2, .., vN]

v1 -> [u1, u2, .., uN]
v2 -> [t1, t2, .., tN]

Resulting dictionary will be

key1->{u1, u2, .., uN}

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.combine_dict_one_value(keydict, valuedict)

	Combine two dictionaries by the value of the keydict is used as a key in
valuedict and the resulting dictionary is composed of keydict keys and
valuedict values.

Same as comb_dict(), but each value in keydict is a single element
that is key in valuedict.

	Parameters

	
	keydict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose keys are the same as the returned
dictionary

	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary whose values are the same as the returned
dictionary

	Return dict

	combined dictionary

	
mgkit.utils.dictionary.filter_nan(ratios)

	Returns a dictionary with the NaN values taken out

	
mgkit.utils.dictionary.filter_ratios_by_numbers(ratios, min_num)

	Returns from a dictionary only the items for which the length of the
iterables that is the value of the item, is equal or greater of min_num.

	Parameters

	
	ratios (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary key->list

	min_num (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of elements in the value iterable

	Return dict

	filtered dictionary

	
mgkit.utils.dictionary.find_id_in_dict(s_id, s_dict)

	Finds a value ‘s_id’ in a dictionary in which the values are iterables.
Returns a list of keys that contain the value.

	Parameters

	
	s_id (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – element to look for in the dictionary’s values

	d (object [https://docs.python.org/3/library/functions.html#object]) – dictionary to search in

	Return list

	list of keys in which d was found

	
mgkit.utils.dictionary.link_ids(id_map, black_list=None)

	Given a dictionary whose values (iterables) can be linked back to other
keys, it returns a dictionary in which the keys are the original keys and
the values are sets of keys to which they can be linked.

key1->[v1, v2]
key2->[v3, v4]
key3->[v2, v4]

Becomes:

key1->[key1, key3]
key2->[key3]
key3->[key1, key2]

	Parameters

	
	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of keys to link

	black_list (iterable) – iterable of values to skip in making the links

	Return dict

	linked dictionary

	
mgkit.utils.dictionary.merge_dictionaries(dicts)

	
New in version 0.3.1.

Merges keys and values from a list/iterable of dictionaries. The resulting
dictionary’s values are converted into sets, with the assumption that the
values are one of the following: float, str, int, bool

	
mgkit.utils.dictionary.reverse_mapping(map_dict)

	Given a dictionary in the form: key->[v1, v2, .., vN], returns a dictionary
in the form: v1->[key1, key2, .., keyN]

	Parameters

	map_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to reverse

	Return dict

	reversed dictionary

	
mgkit.utils.dictionary.split_dictionary_by_value(value_dict, threshold, aggr_func=<function median>, key_filter=None)

	Splits a dictionary, whose values are iterables, based on a threshold:

	one in which the result of aggr_func is lower than the threshold
(first)

	one in which the result of aggr_func is equal or greater than the
threshold (second)

	Parameters

	
	valuedict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary to be splitted

	threshold (number) – must be comparable to threshold

	aggr_func (func) – function used to aggregate the dictionary values

	key_filter (iterable) – if specified, only these key will be in the
resulting dictionary

	Returns

	two dictionaries

 mgkit.utils.sequence module

mgkit.utils.sequence module

Module containing functions related to sequence data

Note

For those functions without a docstring, look at the same with a
underscore (‘_’) prepended.

	
class mgkit.utils.sequence.Alignment(seqs=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple alignment class

	
add_seq(name, seq)

	Add a sequence to the alignment

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the sequence

	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	
add_seqs(seqs)

	Add sequences to the alignment

	Parameters

	seqs (iterable) – iterable that returns (name, seq)

	
get_consensus(nucl=True)

	
Changed in version 0.1.16: added nucl parameter

The consensus sequence is constructed by checking the nucleotide that
has the maximum number of counts for each position in the alignment.

	Parameters

	nucl (bool [https://docs.python.org/3/library/functions.html#bool]) – specify if the alignment is nucleotidic

	Returns

	consensus sequence

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_position(pos)

	Get all characters at a position

	Parameters

	pos (int [https://docs.python.org/3/library/functions.html#int]) – position to return (0-based)

	Return str

	all characters occuring at the position

	
get_seq_len()

	Get the length of the alignment

	
get_snps(ref_seq=None, full_size=False)

	A SNP is called for the nucleotide that has the most counts among the
ones that differ in the each site of the alignment. If two nucleotides
have the same maximum count, one is randomly chosen.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence can be provided, if None, a
consensus sequence is produced for the alignment

	full_size (bool [https://docs.python.org/3/library/functions.html#bool]) – if True a tuple is returned for each position in
the alignment. If there is no SNP at a position the value for the
SNP is None

	Return list

	a list of tuples (position, SNP)

	
mgkit.utils.sequence._get_kmers(seq, k)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a kmer of size k

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	k (int [https://docs.python.org/3/library/functions.html#int]) – kmer size

	Yields

	str – a portion of seq, of size k with a step of 1

	
mgkit.utils.sequence._sequence_signature(seq, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Returns the signature of a sequence, based on a kmer length, over a sliding
window. Each sliding window signature is placed in order into a list, with
each element being a collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instance whose keys are
the kmer found in that window.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to get the signature

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window()

	Returns

	a list of collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] instances, for each
window used

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.utils.sequence._signatures_matrix(seqs, w_size, k_size=4, step=None)

	
New in version 0.2.6.

Return a matrix (pandas.DataFrame) where the columns are the kmer found in
all sequences seqs and the rows are the a MultiIndex with the first level
being the sequnce name and the second the index of the sliding window for
which a signature was computed.

	Parameters

	
	seqs (iterable) – iterable that yields a tuple, with the first element
being the sequence name and the second the sequence itself

	w_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window size

	k_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the kmer to use get_kmers()

	step (int [https://docs.python.org/3/library/functions.html#int]) – step to use in sliding_window(), defaults to half of
the window size

	Returns

	a DataFrame where the columns are the kmers and the
rows are the signatures of each contigs/windows.

	Return type

	pandas.DataFrame

	
mgkit.utils.sequence._sliding_window(seq, size, step=None)

	
New in version 0.2.6.

Returns a generator, with every iteration yielding a subsequence of size
size, with a step of step.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequnece

	size (int [https://docs.python.org/3/library/functions.html#int]) – size of the sliding window

	step (int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]) – the step to use in the sliding window. If None,
half of the sequence length is used

	Yields

	str – a subsequence of size size and step step

	
mgkit.utils.sequence.calc_n50(seq_lengths)

	Calculate the N50 statistics for a numpy.array of sequence
lengths.

The algorithm finds in the supplied array the element (contig length) for
which the sum all contig lengths equal or greater than it is equal to half
of all assembled base pairs.

	Parameters

	seq_lengths (array) – an instance of a numpy array containing the
sequence lengths

	Return int

	the N50 statistics value

	
mgkit.utils.sequence.check_snp_in_seq(ref_seq, pos, change, start=0, trans_table=None)

	Check a SNP in a reference sequence if it is a synonymous or non-synonymous
change.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	pos (int [https://docs.python.org/3/library/functions.html#int]) – SNP position - it is expected to be a 1 based index

	change (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide change occuring at pos

	start (int [https://docs.python.org/3/library/functions.html#int]) – the starting position for the coding region - 0 based
index

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return bool

	True if it is a synonymous change, False if non-synonymous

	
mgkit.utils.sequence.convert_aa_to_nuc_coord(start, end, frame=0)

	Converts aa coordinates to nucleotidic ones. The coordinates must be from
‘+’ strand. For the ‘-‘ strand, use reverse_aa_coord() first.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation (lowest number)

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation (highest number)

	frame (int [https://docs.python.org/3/library/functions.html#int]) – frame of the AA translation (0, 1 or 2)

	Returns

	the first element is the converted start and the second
element is the converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

the coordinates are assumed to be 1-based indices

	
mgkit.utils.sequence.extrapolate_model(quals, frac=0.5, scale_adj=0.5)

	
New in version 0.3.3.

Extrapolate a quality model from a list of qualities. It uses internally
a LOWESS as the base, which is used to estimate the noise as a normal
distribution.

	Parameters

	
	quals (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of arrays of qualities, sorted by position in the
corresponding sequence

	frac (float [https://docs.python.org/3/library/functions.html#float]) – fraction of the data used for the LOWESS fit (uses
statsmodels)

	scale_adj (float [https://docs.python.org/3/library/functions.html#float]) – value by which the scale of the normal distribution
will be multiplied. Defaults to halving the scale

	Returns

	the first element is the qualities fit with a LOWESS, the second
element is the distribution

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_contigs_info(file_name, pp=False)

	
Changed in version 0.2.4: file_name can be a dict name->seq or a list of sequences

New in version 0.2.1.

Given a file name for a fasta file with sequences, a dictionary of
name->seq, or a list of sequences, returns the following information in a
tuple, or a string if pp is True:

	number of sequences

	total base pairs

	max length

	min length

	average length

	N50 statistic

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – fasta file to open

	pp (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a formatted string is returned

	Returns

	the returned value depends on the value of pp, if True a
formatted string is returned, otherwise the tuple with all values is.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.get_seq_expected_syn_count(seq, start=0, syn_matrix=None)

	Calculate the expected number of synonymous and non-synonymous changes in a
nucleotide sequence. Assumes that the sequence is already in the correct
frame and its length is a multiple of 3.

	Parameters

	
	seq (iterable) – nucleotide sequence (uppercase chars)

	start (int [https://docs.python.org/3/library/functions.html#int]) – frame of the sequence

	syn_matrix (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary that contains the expected number of
changes for a codon, as returned by get_syn_matrix()

	Return tuple

	tuple with counts of expected counts (syn, nonsyn)

	
mgkit.utils.sequence.get_seq_number_of_syn(ref_seq, snps, start=0, trans_table=None)

	Given a reference sequence and a list of SNPs, calculates the number of
synonymous and non-synonymous SNP.

	Parameters

	
	ref_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence

	snps (iterable) – list of tuples (position, SNP) - zero based index

	start (int [https://docs.python.org/3/library/functions.html#int]) – the frame used for the reference {0, 1, 2}

	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table used - codon->AA

	Return tuple

	synonymous and non-synonymous counts

	
mgkit.utils.sequence.get_syn_matrix(trans_table=None, nuc_list=None)

	Returns a dictionary containing the expected count of synonymous and
non-synonymous changes that a codon can have if one base is allowed to
change at a time.

There are 9 possible changes per codon.

	Parameters

	
	trans_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a tranlation table, defaults to
seq_utils.TRANS_TABLE

	nuc_list (iterable) – a list of nucleotides in which a base can change,
default to the keys of seq_utils.REV_COMP

	Return dict

	returns a dictionary in which for each codon a dictionary
{‘syn’: 0, ‘nonsyn’: 0} holds the number of expected changes

	
mgkit.utils.sequence.get_syn_matrix_all(trans_table=None)

	Same as get_syn_matrix() but a codon can change in any of the ones
included in trans_table.

There are 63 possible changes per codon.

	
mgkit.utils.sequence.get_variant_sequence(seq, *snps)

	
New in version 0.1.16.

Return a sequence changed in the positions requested.

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – a sequence

	*snps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – each argument passed is a tuple with the first element
as a position in the sequence (1-based index) and the second
element is the character to substitute in the sequence

	Returns

	string with the changed characters

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

>>> get_variant_sequence('ACTGATATATGCGCGCATCT', (1, 'C'))
'CCTGNTGTATGCGCGCATCT'

Note

It is used for nucleotide sequences, but it is valid to use any string

	
mgkit.utils.sequence.make_reverse_table(tbl=None)

	Makes table to reverse complement a sequence by reverse_complement().
The table used is the complement for each nucleotide, defaulting to
REV_COMP

	
mgkit.utils.sequence.put_gaps_in_nuc_seq(nuc_seq, aa_seq, trim=True)

	Match the gaps in an amino-acid aligned sequence to its original nucleotide
sequence. If the nucleotide sequence is not a multiple of 3, the trim
option by default trim those bases from the output.

	Parameters

	
	nuc_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – original nucleotide sequence

	aa_seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – aligned amino-acid sequence

	trim (bool [https://docs.python.org/3/library/functions.html#bool]) – if True trim last nucleotide(s)

	Return str

	gapped nucleotide sequence

	
mgkit.utils.sequence.qualities_model_constant(length=150, scale=1, loc=35)

	
New in version 0.3.3.

Model with constant quality

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.qualities_model_decrease(length=150, scale=None, loc=35)

	
New in version 0.3.3.

The model is a decreasing one, from 35 and depends on the length of the
sequence.

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the qualities

	scale (float [https://docs.python.org/3/library/functions.html#float]) – base level of the qualities

	loc (float [https://docs.python.org/3/library/functions.html#float]) – loc parameter of the normal distribution

	Returns

	first element is sequence qualities, the second element contains
the distribution used to randomise them

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mgkit.utils.sequence.random_qualities(n=1, length=150, model=None)

	
New in version 0.3.3.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of quality arrays to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the quality array

	model (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a tuple specifying the qualities and error distribution,
if None qualities_model_decrease() is used

	Yields

	numpy.array – numpy array of qualities, with the maximum value of 40

	
mgkit.utils.sequence.random_sequences(n=1, length=150, p=None)

	
New in version 0.3.3.

Returns an iterator of random squences, where each nucleotide probability
can be customised in the order (A, C, T, G)

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of each sequence

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple with the probability of a nucleotide to occur, in the
order A, C, T, G

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.random_sequences_codon(n=1, length=150, codons=['CTT', 'TAG', 'ACA', 'AAA', 'ATC', 'AAC', 'ATA', 'AGG', 'CCT', 'ACT', 'AGC', 'AAG', 'AGA', 'CAT', 'AAT', 'ATT', 'CTG', 'CTA', 'CTC', 'CAC', 'TGG', 'CAA', 'AGT', 'CCA', 'CCG', 'CCC', 'TAT', 'GGT', 'TGT', 'CGA', 'CAG', 'TCT', 'GAT', 'CGG', 'TTT', 'TGC', 'GGG', 'TGA', 'GGA', 'TAA', 'ACG', 'TAC', 'TTC', 'TCG', 'TTA', 'TTG', 'TCC', 'ACC', 'TCA', 'GCA', 'GTA', 'GCC', 'GTC', 'GGC', 'GCG', 'GTG', 'GAG', 'GTT', 'GCT', 'GAC', 'CGT', 'GAA', 'ATG', 'CGC'], p=None, frame=None)

	
New in version 0.3.3.

Returns an iterator of nucleotidic sequences, based on a defined genetic
code (passed as parameter, defaults to the universal one). The sequence if
first sampled with replacement from the codon list, with a number of codons
that covers the length chosen plus an additional one to allow a frame shift
as set by frame

Note

If the probability (for each codon) are supplied, the number of
sequences required to match those probabilities within a 10% margin of
error is of at least 10.000 sequences, for 5% at leas 100.000

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of sequences to yield

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of the sequences

	codons (iterable) – codons used when generating the sequences

	p (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – probability of each codon occurence, in the same order as
codons

	frame (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – used to define a specific frame shift occuring in
the sequence (0 to 2) or a random one (if None)

	Yields

	str – string representing a nucleotidic sequence

	
mgkit.utils.sequence.reverse_aa_coord(start, end, seq_len)

	Used to reverse amino-acid coordinates when parsing an AA annotation on
the - strand. Used when the BLAST or HMMER annotations use AA sequences.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the annotation

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the annotation

	seq_len (int [https://docs.python.org/3/library/functions.html#int]) – aa sequence length

	Returns

	reversed (from strand - to strand +) coordinates. The first
element is the converted start and the second element is the
converted end

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Note

	start and end are 1-based indices

	
mgkit.utils.sequence.reverse_complement(seq, tbl='\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+, -./0123456789:;<=>?@TBGDEFCHIJKLMNOPQRSAUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff')

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – translation table returned by make_reverse_table()

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.reverse_complement_old(seq, tbl=None)

	Returns the reverse complement of a nucleotide sequence

	Parameters

	
	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – nucleotide sequence with uppercase characters

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of complement bases, like REV_COMP

	Return str

	returns the reverse complement of a nucleotide sequence

	
mgkit.utils.sequence.sequence_composition(sequence, chars=('A', 'C', 'T', 'G'))

	
New in version 0.1.13.

Returns the number of occurences of each unique character in the sequence

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	chars (iterable, None [https://docs.python.org/3/library/constants.html#None]) – iterable of the chars to test, default to
(A, C, T, G). if None checks all unique characters in the sequencce

	Yields

	tuple – the first element is the nucleotide and the second is the number
of occurences in sequence

	
mgkit.utils.sequence.sequence_gc_content(sequence)

	
Changed in version 0.3.3: in case of ZeroDivisionError returns .5

New in version 0.1.13.

Calculate GC content information for an annotation. The formula is:

(1)\[\frac {(G + C)}{(G + C + A + T)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC content

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.sequence_gc_ratio(sequence)

	
New in version 0.1.13.

Calculate GC ratio information for a sequence. The formula is:

(2)\[\frac {(A + T)}{(G + C)}\]

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence

	Returns

	GC ratio, or numpy.nan if G = C = 0

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.utils.sequence.translate_sequence(sequence, start=0, tbl=None, reverse=False)

	Translate a nucleotide sequence in an amino acid one.

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence to translate, it’s expected to be all caps

	start (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index for the translation to start

	tbl (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the translation for each codon

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, reverse_complement() will be called and
the returned sequence translated

	Return str

	the translated sequence

 mgkit.utils.trans_tables module

mgkit.utils.trans_tables module

The module contains translation tables

Not all genetic codes are included, taken from:
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG2

 mgkit.workflow package

mgkit.workflow package

Submodules

	mgkit.workflow.add_gff_info module
	Uniprot Command

	Coverage Command

	Adding Coverage from samtools depth

	Uniprot Offline Mappings

	Kegg Information

	Expected Aminoacidic Changes

	Adding Count Data

	Adding Taxonomy from a Table

	Adding information from Pfam

	Changes

	mgkit.workflow.blast2gff module
	Uniprot

	BlastDB

	Changes

	mgkit.workflow.extract_gff_info module
	sequence command

	dbm command

	mongodb command

	gtf command

	split command

	cov command

	Changes

	mgkit.workflow.fasta_utils module
	split command

	translate command

	uid command

	Changes

	mgkit.workflow.fastq_utils module
	Commands

	Changes

	mgkit.workflow.filter_gff module
	Value Filtering

	Overlap Filtering

	Per Sequence Values

	Coverage Filtering

	Changes

	mgkit.workflow.hmmer2gff module
	Changes

	mgkit.workflow.json2gff module
	mongodb command

	mgkit.workflow.sampling_utils module
	Resampling Utilities
	sample command

	sample_stream command

	sync command

	rand_seq command

	Changes

	mgkit.workflow.snp_parser module
	Changes

	mgkit.workflow.taxon_utils module
	Last Common Ancestor (lca and lca_line)
	Krona Output

	Filter by Taxon

	Convert Taxa Tables to HDF5

	Changes

	mgkit.workflow.utils module

Module contents

Workflows used to script the library - execute bits of the pipelines supported

 mgkit.workflow.add_gff_info module

mgkit.workflow.add_gff_info module

Add more information to GFF annotations: gene mappings, coverage, taxonomy,
etc..

Uniprot Command

If the gene_id of an annotation is a Uniprot ID, the script queries Uniprot
for the requested information. At the moment the information that can be added
is the taxon_id, taxon_name, lineage and mapping to EC, KO, eggNOG IDs.

It’s also possible to add mappings to other databases using the -m option
with the correct identifier for the mapping, which can be found at this page [http://www.uniprot.org/faq/28]; for example if it’s we want to add the
mappings of uniprot IDs to BioCyc, in the abbreviation column of the
mappings we find that it’s identifier is REACTOME_ID, so we pass
-m REACTOME to the script (leaving _ID out). Mapped IDs are separated by
commas.

The taxonomy IDs are not overwritten if they are found in the annotations, the
-f is provided to force the overwriting of those values.

See also MGKit GFF Specifications for more informations about the GFF specifications
used.

Note

As the script needs to query Uniprot a lot, it is recommended to split
the GFF in several files, so an error in the connection doesn’t waste time.

However, a cache is kept to reduce the number of connections

Coverage Command

Adds coverage information from BAM alignment files to a GFF file, using the
function mgkit.align.add_coverage_info(), the user needs to supply for
each sample a BAM file, using the -a option, whose parameter is in the form
sample,samplealg.bam. More samples can be supplied adding more -a
arguments.

Hint

As an example, to add coverage for sample1, sample2 the command line
is:

add-gff-info coverage -a sample1,sample1.bam -a sample2,sample2.bam \
inputgff outputgff

A total coverage for the annotation is also calculated and stored in the
cov attribute, while each sample coverage is stored into sample_cov as per
MGKit GFF Specifications.

Adding Coverage from samtools depth

The cov_samtools allows the use of the output of samtools depth
command. The -aa options must be used to pass information about all base
pairs and sequences coverage in the BAM/SAM file. The command work similarly to
coverage, accepting compressed depth files as well. If only one depth
file is passed and no sample is passed, the attribute in the GFF will be cov,
otherwise the attribute will be sample1_cov, sample2_cov, etc.

To create samtools depth files, this command must be used:

$ samtools depth -aa bam_file

Uniprot Offline Mappings

Similar to the uniprot command, it uses the idmapping [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz]
file provided by Uniprot, which speeds up the process of adding mappings and
taxonomy IDs from Uniprot gene IDs. It’s not possible tough to add EC
mappings with this command, as those are not included in the file.

Kegg Information

The kegg command allows to add information to each annotation. Right now the
information that can be added is restricted to the pathway(s) (reference KO) a
KO is part of and both the KO and pathway(s) descriptions. This information is
stored in keys starting with ko_.

Expected Aminoacidic Changes

Some scripts, like snp_parser - SNPs analysis, require information about the expected
number of synonymous and non-synonymous changes of an annotation. This can be
done using mgkit.io.gff.Annotation.add_exp_syn_count() by the user of the
command exp_syn of this script. The attributes added to each annotation are
explained in the MGKit GFF Specifications

Adding Count Data

Count data on a per-sample basis can be added with the counts command. The
accepted inputs are from HTSeq-count and featureCounts. The ouput produced by
featureCounts, is the one from using its -f option must be used.

This script accept by default a tab separated file, with a uid in the first
column and the other columns are the counts for each sample, in the same order
as they are passed to the -s option. To use the featureCounts file format,
this script -e option must be used.

The sample names must be provided in the same order as the columns in the input
files. If the counts are FPKMS the -f option can be used.

Adding Taxonomy from a Table

There are cases where it may needed or preferred to add the taxonomy from a
gene_id already provided in the GFF file. For such cases the addtaxa
command can be used. It works in a similar way to the taxonomy command, only
it expect three different type of inputs:

	GI-Taxa table from NCBI (e.g. gi_taxid_nucl.dmp,)

	tab separated table

	dictionary

	HDF5

The first two are tab separated files, where on each line, the first column is
the gene_id that is found in the first column, while the second if the
taxon_id.

The third option is a serialised Python dict/hash table, whose keys are the
gene_id and the value is that gene corresponding taxon_id. The serialised
formats accepted are msgpack, json and pickle. The msgpack module must be
importable. The option to use json and msgpack allow to integrate this script
with other languages without resorting to a text file.

The last option is a HDF5 created using the to_hdf command in
taxon-utils - Taxonomy Utilities. This requires pandas installed and pytables and it
provides faster lookup of IDs in the table.

While the default is to look for the gene_id attribute in the GFF annotation,
another attribute can be specified, using the -gene-attr option.

Note

the dictionary content is loaded after the table files and its keys and
corresponding values takes precedence over the text files.

Warning

from September 2016 NCBI will retire the GI. In that case the same
kind of table can be built from the nucl_gb.accession2taxid.gz file
The format is different, but some information can be found in
mgkit.io.blast.parse_accession_taxa_table()

Adding information from Pfam

Adds the Pfam description for the annotation, by downloading the list from
Pfam.

The options allow to specify in which attribute the ID/ACCESSION is stored
(defaults to gene_id) and which one between ID/ACCESSION is the value of that
attribute (defaults to ID). if no description is found for the family, a
warning message is logged.

Changes

Changed in version 0.3.4: removed the taxonomy command, since a similar result can be obtained with
taxon-utils lca and add-gff-info addtaxa. Removed eggnog command and
added option to verbose the logging in cov_samtools (now is quiet), also
changed the interface

Changed in version 0.3.3: changed how addtaxa -a works, to allow the use of seq_id as key to
add the taxon_id

Changed in version 0.3.0: added cov_samtools command, –split option to exp_syn, -c option to
addtaxa. kegg now does not skip annotations when the attribute is not
found.

Changed in version 0.2.6: added skip-no-taxon option to addtaxa

Changed in version 0.2.5: if a dictionary is supplied to addtaxa, the GFF is not preloaded

Changed in version 0.2.3: added pfam command, renamed gitaxa to addtaxa and made it general

Changed in version 0.2.2: added eggnog, gitaxa and counts command

Changed in version 0.2.1.

	added -d to uniprot command

	added cache to uniprot command

	added kegg command (cached)

Changed in version 0.1.16: added exp_syn command

Changed in version 0.1.15: taxonomy command -b option changed

Changed in version 0.1.13.

	added –force-taxon-id option to the uniprot command

	added coverage command

	added taxonomy command

	added unipfile command

New in version 0.1.12.

	
mgkit.workflow.add_gff_info.add_uniprot_info(annotations, email, force_taxon_id, taxon_id, lineage, eggnog, enzymes, kegg_orthologs, protein_names, mapping, info_cache)

	

	
mgkit.workflow.add_gff_info.load_featurecounts_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.load_htseq_count_files(count_files, samples)

	

	
mgkit.workflow.add_gff_info.parse_hdf5_arg(ctx, param, values)

	

	
mgkit.workflow.add_gff_info.split_sample_alg(ctx, param, values)

	Split sample/alignment option

 mgkit.workflow.blast2gff module

mgkit.workflow.blast2gff module

Blast output conversion in GFF requires a BLAST+ tabular format which can be
obtained by using the –outfmt 6 option with the default columns, as
specified in mgkit.io.blast.parse_blast_tab(). The script can get data
from the standard in and ouputs GFF lines on the standard output by default.

Uniprot

The Function mgkit.io.blast.parse_uniprot_blast() is used, which filters
BLAST hits based on bitscore and adds by default a db attribute to the
annotation with the value UNIPROT-SP, indicating that the SwissProt db is
used and a dbq attribute with the value 10. The feature type used in the GFF
is CDS.

 blockdiag

 BLAST+

 parse_uniprot_blast

 GFF

BlastDB

If a BlastDB, such as nt or nr was used, the blastdb command offers
some quick defaults to parse BLAST results.

It now includes options to control the way the sequence header are formatted.
Options to change the separator used, as well as the column used as gene_id.
This was added because at the moment the GI identifier (the second column in
the header) is used, but it’s being phased out in favour of the embl/gb/dbj
(right now the fourth column in the header). This should easy the transition to
the new format and makes it easier to adapt an older pipeline/blastdb to newer
files (like the ID to TAXA files).

The header from the a ncbi-nt header looks like this:

gi|160361034|gb|CP000884.1

This is the default output accepted by the blastdb command. The fields are
separated by | (pipe) and the GI is used (–gene-index 1, since internally
the string is split by the separator and the second element is take - lists
indices are 0-based in Python). This output uses the following options:

--header-sep '|' --gene-index 1

Notice the single quotes to pass the pipe symbol, since bash would interpret
it as pipeing to the next coommand otherwise. This is the default.

In case, for the same header, we want to use the gb identifier, the only
option to be specified is:

--gene-index 3

This will get the fourth element of the header (since we’re splitting by pipe).

As in the uniprot command, the gene_id can be set to use the whole header,
using the -n option. Useful in case the BLAST db that was used was custom
made. While pipe is used in major databases, it was made the default, by if the
db used has different conventions the separator can be changed. There’s also
the options of later changing the gene_id in the output GFF if necessary.

Changes

Changed in version 0.3.4: using click instead of argparse

Changed in version 0.2.6: added -r option to blastdb

Changed in version 0.2.5: added more options to give user control to the blastdb command

New in version 0.2.3: added –fasta-file option, added more data from a blsat hit

New in version 0.2.2: added blastdb command

Changed in version 0.2.1: added -ft option

Changed in version 0.1.13: added -n and -k parameters to uniprot command

New in version 0.1.12.

	
mgkit.workflow.blast2gff.load_fasta_file(file_name)

	

	
mgkit.workflow.blast2gff.validate_params(ctx, param, values)

	

 mgkit.workflow.extract_gff_info module

mgkit.workflow.extract_gff_info module

Extract information from GFF files

sequence command

Used to extract the nucleotidic sequences from GFF annotations. It requires the
fasta file containing the sequences referenced in the GFF seq_id attribute
(first column of the raw GFF).

The sequnces extract have as identifier the uid stored in the GFF file and by
default the sequnece is not reverse complemented if the annotation is on the
- strand, but this can be changed by using the -r option.

The sequences are wrapped at 60 characters, as per FASTA specs, but this
behavior can be disabled by specifing the -w option.

Warning

The reference file is loaded in memory

dbm command

Creates a dbm DB using the semidbm package. The database can then be loaded
using mgkit.db.dbm.GFFDB

mongodb command

Outputs annotations in a format supported by MongoDB. More information about it
can be found in mgkit.db.mongo

gtf command

Outputs annotations in the GTF format

split command

Splits a GFF file into smaller chunks, ensuring that all of a sequence
annotations are in the same file.

cov command

Calculate annotation coverage for each contig in a GFF file. The command can be
run as strand specific (not by default) and requires the reference file to
which the annotation refer to. The output file is a tab separated one, with the
first column being the sequence name, the second is the strand (+, -, or NA if
not strand specific) and the third is the percentage of the sequence covered by
annotations.

Warning

The GFF file is assumed to be sorted, by sequence or sequence-strand if
wanted. The GFF file can be sorted using sort -s -k 1,1 -k 7,7 for strand
specific, or sort -s -k 1,1 if not strand specific.

Changes

Changed in version 0.3.4: using click instead of argparse, renamed split command –json to
–json-out

Changed in version 0.3.1: added cov command

Changed in version 0.3.0: added –split option to sequence command

Changed in version 0.2.6: added split command, –indent option to mongodb

Changed in version 0.2.3: added –gene-id option to gtf command

New in version 0.2.2: added gtf command

New in version 0.2.1: dbm and mongodb commands

New in version 0.1.15.

 mgkit.workflow.fasta_utils module

mgkit.workflow.fasta_utils module

New in version 0.3.0.

Scripts that includes some functionality to help use FASTA files with the
framework

split command

Used to split a fasta file into smaller fragments

translate command

Used to translate nucleotide sequences into amino acids.

uid command

Used to change a FASTA file headers to a unique ID. A table (tab separated)
with the changes made can be kept, using the –table option.

Changes

New in version 0.3.0.

Changed in version 0.3.1: added translate and uid command

Changed in version 0.3.4: ported to click

	
mgkit.workflow.fasta_utils.load_trans_table(table_name)

	Loads translation table

	
mgkit.workflow.fasta_utils.translate_seq(name, seq, trans_table)

	Tranlates sequence into the 6 frames

 mgkit.workflow.fastq_utils module

mgkit.workflow.fastq_utils module

Commands

	Interleave/deinterleave paired-end fastq files.

	Converts to FASTA

	sort 2 files to sync the headers

Changes

Changed in version 0.3.4: moved to use click, internal fastq parsing, removed rand command

Changed in version 0.3.1: added stdin/stdout defaults for some commands

Changed in version 0.3.0: added convert command to FASTA

	
mgkit.workflow.fastq_utils.report_counts(count, wcount, counter=None)

	Logs the status

 mgkit.workflow.filter_gff module

mgkit.workflow.filter_gff module

Filters GFF annotations in different ways.

Value Filtering

Enables filtering of GFF annotations based on the the values of attributes of a
GFF annotation. The filters are based on equality of numbers (internally
converted into float) and strings, a string contained in the value of an attribute
less or greater than are included as well. The length of annotation has the
attribute length and can be tested.

Overlap Filtering

Filters overlapping annotations using the functions
mgkit.filter.gff.choose_annotation() and
mgkit.filter.gff.filter_annotations(), after the annotations are grouped
by both sequence and strand. If the GFF is sorted by sequence name and strand,
the -t can be used to make the filtering use less memory. It can be sorted in
Unix using sort -s -k 1,1 -k 7,7 gff_file, which applies a stable sort using
the sequence name as the first key and the strand as the second key.

Note

It is also recommended to use:

export LC_ALL=C

To speed up the sorting

 blockdiag

 sort

 group_annotations

 GFF

 parse_gff

 filter_annotati
 ons

 Filtered Annotations

The above digram describes the internals of the script.

The annotations needs first to be grouped by seq_id and strand, forming a group
that can be then be passed to mgkit.filter.gff.filter_annotations().
This function:

	sort annotations by bit score, from the highest to the lowest

	loop over all combination of N=2 annotations:

	choose which of the two annotations to discard if they overlap for a
the required amount of bp (defaults to 100bp)

	in which case, the preference is given to the db quality first, than
the bit score and finally the lenght of annotation, the one with the
highest values is kept

While the default behaviour is the same, now it is posible to decided the
function used to discard one the two annotations. It is possible to use the
-c argument to pass a string that defines the function. The string passed must
start with or without a +. Using + translates into the builtin function
max while no + translates into min from the second character on, any
number of attributes can be used, separated by commas. The attributes, however,
must be one of the properties defined in mgkit.io.gff.Annotation,
bitscore that returns the value converted in a float. Internally the
attributes are stored as strings, so for attributes that have no properties in
the class, such as evalue, the float builtin is applied.

The tuples built for both annotations are then passed to the comparison
function to be selected and the value returned by it is discarded. The
order of the elements in the string is important to define the priority
given to each element in the comparison and the leftmost one has the
highesst priority.

Examples of function strings:

	-dbq,bitscore,length becomes max((ann1.dbq, ann1.bitscore, ann1.length),
(ann2.dbq, ann2.bitscore, ann2.length) - This is default and previously
only choice

	-bitscore,length,dbq uses the same elements but gives lowest priority
to dbq

	+evalue: will discard the annotation with the highest evalue

Per Sequence Values

The sequence command allows to filter on a per sequence basis, using
functions such as the median, quantile and mean on attributes like evalue,
bitscore and identity. The file can be passed as sorted already, saving memory
(like in the overlap command), but it’s not needed to sort the file by strand,
only by the first column.

Coverage Filtering

The cov command calculates the coverage of annotations as a measure of the
percentage of each reference sequence length. A minimum coverage percentage can
be used to keep the annotations of sequences that have a greater or equal
coverage than the specified one.

Changes

New in version 0.1.12.

Changed in version 0.1.13: added –sorted option

Changed in version 0.2.0: changed option -c to accept a string to filter overlap

Changed in version 0.2.5: added sequence command

Changed in version 0.2.6: added length as attribute and min/max, and ge is the default
comparison for command sequence, –sort-attr to overlap

Changed in version 0.3.1: added –num-gt and –num-lt to values command, added cov command

Changed in version 0.3.4: moved to use click for argument parsing reworked the values, sequence
commands

	
mgkit.workflow.filter_gff.filter_eq(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_gt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.filter_in(annotation, attr=None, value=None, conv=None)

	

	
mgkit.workflow.filter_gff.filter_lt(annotation, attr=None, value=None, conv=None, equal=None)

	

	
mgkit.workflow.filter_gff.find_comparison(comparison)

	

	
mgkit.workflow.filter_gff.make_choose_func(values)

	Builds the function used to choose between two annotations.

	
mgkit.workflow.filter_gff.perseq_calc_threshold(annotations, attribute, function, func_arg=None)

	

	
mgkit.workflow.filter_gff.setup_filters(str_eq, str_in, num_eq, num_ge, num_le, num_gt, num_lt)

	

	
mgkit.workflow.filter_gff.validate_params(ctx, param, values, convert=<type 'str'>)

	

 mgkit.workflow.hmmer2gff module

mgkit.workflow.hmmer2gff module

Script to convert HMMER results files (domain table) to a GFF file, the name of
the profiles are expected to be now in the form
GENEID_TAXONID_TAXON-NAME(-nr) by default, but any other profile name is
accepted.

The profiles tested are those made from Kegg Orthologs, from the
download_profiles script. If the –no-custom-profiles options is used,
the script can be used with any profile name. The profile name will be used
for gene_id, taxon_id and taxon_name in the GFF file.

It is possible to use seuqnces not translated using mgkit, no information on
the frame is assumed, so this script can be used against a protein DB. For
example Uniprot can be searched for profiles, in which case the –no-frame
options must be used.

Note

for GENEID, old documentation points to KOID, it is the same

Warning

The compatibility with old data has been removed, meaning that old
experiments must use the scripts from those versions. It is possible to use
multiple environments, with virtualenv for this purpose. An examples is
given in Installation.

Changes

Changed in version 0.1.15: adapted to new GFF module and specs

Changed in version 0.2.1: added options to customise output and filters and old restrictions

Changed in version 0.3.1: added –no-frame option for non mgkit-translated proteins, sequence
headers are handled the same way as HMMER (truncated at the first space)

	
mgkit.workflow.hmmer2gff.get_aa_data(f_handle)

	Load aminoacid seuqnces used by HMMER.

	
mgkit.workflow.hmmer2gff.main()

	Main loop

	
mgkit.workflow.hmmer2gff.parse_domain_table_contigs(options)

	Parse the HMMER result file

	
mgkit.workflow.hmmer2gff.set_parser()

	Setup command line options

 mgkit.workflow.json2gff module

mgkit.workflow.json2gff module

Changed in version 0.3.4: using click instead of argparse

New in version 0.2.6.

This script converts annotations in JSON format that were created using MGKit
back into GFF annotations.

mongodb command

Annotations converted into MongoDB records with get-gff-info mongodb can be
converted back into a GFF file using this command. It can be useful to get a
GFF file as output from a query to a MongoDB instance on the command line.

For example:

mongoexport -d db -c test | json2gff mongodb

will convert all the annotations in the database db, collection test to
the standard out.

 mgkit.workflow.sampling_utils module

mgkit.workflow.sampling_utils module

New in version 0.3.1.

Resampling Utilities

sample command

This command samples from a Fasta or FastQ file, based on a probability defined
by the user (0.001 or 1 / 1000 by default, -r parameter), for a maximum number
of sequences (100,000 by default, -x parameter). By default 1 sample is
extracted, but as many as desired can be taken, by using the -n parameter.

The sequence file in input can be either be passed to the standard input or as
last parameter on the command line. By defult a Fasta is expected, unless the
-q parameter is passed.

The -p parameter specifies the prefix to be used, and if the output files can
be gzipped using the -z parameter.

sample_stream command

It works in the same way as sample, however the file is sampled only once and
the output is the stdout by default. This can be convenient if streams are a
preferred way to sample the file.

sync command

Used to keep in sync forward and reverse read files in paired-end FASTQ.
The scenario is that the sample command was used to resample a FASTQ file,
usually the forward, but we need the reverse as well. In this case, the resampled
file, called master is passed to the -m option and the input file is
the file that is to be synced (reverse). The input file is scanned until the same header is
found in the master file and when that happens, the sequence is written. The
next sequence is then read from the master file and the process is repeated until all
sequence in the master file are found in the input file. This implies having
the 2 files sorted in the same way, which is what the sample command does.

Note

the old casava format is not supported by this command at the moment, as
it’s unusual to find it in SRA or other repositories as well.

rand_seq command

Generate random FastA/Q sequences, allowing the specification of GC content and
number of sequences being coding or random. If the output format chosen is
FastQ, qualities are generated using a decreasing model with added noise. A
constant model can be specified instead with a switch. Parameters such GC,
length and the type of model can be infered by passing a FastA/Q file, with
the quality model fit using a LOWESS (using mgkit.utils.sequence.extrapolate_model()).
The noise in that case is model as the a normal distribution fitted from the
qualities along the sequence deviating from the fitted LOWSS and scaled back by
half to avoid too drastic changes in the qualities. Also the qualities are
clipped at 40 to avoid compatibility problems with FastQ readers. If inferred,
the model can be saved (as a pickle file) and loaded back for analysis

Changes

Changed in version 0.3.4: using click instead of argparse. Now *rand_seq can save and reload models

Changed in version 0.3.3: added sync, sample_stream and rand_seq commnads

	
mgkit.workflow.sampling_utils.compare_header(header1, header2, header_type=None)

	

	
mgkit.workflow.sampling_utils.infer_parameters(file_handle, fastq_bool, progress)

	

 mgkit.workflow.snp_parser module

mgkit.workflow.snp_parser module

This script parses results of SNPs analysis from any tool for SNP calling 1
and integrates them into a format that can be later used for other scripts in
the pipeline.

It integrates coverage and expected number of syn/nonsyn change and taxonomy
from a GFF file, SNP data from a VCF file.

Note

The script accept gzipped VCF files

	1

	GATK pipeline was tested, but it is possible to use samtools and
bcftools

Changes

Changed in version 0.2.1: added -s option for VCF files generated using bcftools

Changed in version 0.1.16: reworkked internals and removed SNPDat, syn/nonsyn evaluation is internal

Changed in version 0.1.13: reworked the internals and the classes used, including options -m and -s

	
mgkit.workflow.snp_parser.check_snp_in_set(samples, snp_data, pos, change, annotations, seq)

	Used by parse_vcf() to check if a SNP

	Parameters

	
	samples (iterable) – list of samples that contain the SNP

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.init_count_set(annotations)

	

	
mgkit.workflow.snp_parser.main()

	Main function

	
mgkit.workflow.snp_parser.parse_vcf(vcf_file, snp_data, min_reads, min_af, min_qual, annotations, seqs, options, line_num=100000)

	Parse VCF file counts synonymous and non-synonymous SNPs

	Parameters

	
	vcf_file (file) – file handle to a VCF file

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	min_reads (int [https://docs.python.org/3/library/functions.html#int]) – minimum number of reads to accept a SNP

	min_af (float [https://docs.python.org/3/library/functions.html#float]) – minimum allele frequency to accept a SNP

	min_qual (int [https://docs.python.org/3/library/functions.html#int]) – minimum quality (Phred score) to accept a SNP

	annotations (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – annotations grouped by their reference sequence

	seqs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – reference sequences

	line_num (int [https://docs.python.org/3/library/functions.html#int]) – the interval in number of lines at which progress
will be printed

	
mgkit.workflow.snp_parser.save_data(output_file, snp_data)

	Pickle data structures to the disk.

	Parameters

	
	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – base name for pickle files

	snp_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary from init_count_set() with per
sample SNPs information

	
mgkit.workflow.snp_parser.set_parser()

	Sets command line arguments parser

 mgkit.workflow.taxon_utils module

mgkit.workflow.taxon_utils module

The script contains commands used to access functionality related to
taxonomy, without the need to write ad-hoc code for functionality that
can be part of a workflow. One example is access to the the last common
ancestor function contained in the mgkit.taxon.

Last Common Ancestor (lca and lca_line)

These commands expose the functionality of
last_common_ancestor_multiple(), making it accessible via the command
line. They differ in the input file format and the choice of output files.

the lca command can be used to define the last common ancestor of contigs
from the annotation in a GFF file. The command uses the taxon_ids from all
annotations belonging to a contig/sequence, if they have a bitscore higher
or equal to the one passed (50 by default). The default output of the command
is a tab separated file where the first column is the contig/sequence name,
the taxon_id of the last common ancestor, its scientific/common name and its
lineage.

For example:

contig_21 172788 uncultured phototrophic eukaryote cellular organisms,environmental samples

If the -r is used, by passing the fasta file containing the nucleotide
sequences the output file is a GFF where for each an annotation for the full
contig length contains the same information of the tab separated file format.

The lca_line command accept as input a file where each line consist of a
list of taxon_ids. The separator for the list can be changed and it defaults to
TAB. The last common ancestor for all taxa on a line is searched. The ouput of
this command is the same as the tab separated file of the lca command, with
the difference that instead of the first column, which in this command becames
a list of all taxon_ids that were used to find the last common ancestor for
that line. The list of taxon_ids is separated by semicolon “;”.

Note

Both also accept the -n option, to report the config/line and the
taxon_ids that had no common ancestors. These are treated as errors and do
not appear in the output file.

Krona Output

New in version 0.3.0.

The lca command supports the writing of a file compatible with Krona. The
output file can be used with the ktImportText/ImportText.pl script included
with KronaTools [https://github.com/marbl/Krona/wiki]. Specifically, the
output from taxon_utils will be a file with all the lineages found (tab
separated), that can be used with:

$ ktImportText -q taxon_utils_ouput

Note the use of -q to make the script count the lineages. Sequences with no
LCA found will be marked as No LCA in the graph, the -n is not required.

Note

Please note that the output won’t include any sequence that didn’t have a
hit with the software used. If that’s important, the -kt option can be
used to add a number of Unknown lines at the end, to read the total
supplied.

Filter by Taxon

The filter command of this script allows to filter a GFF file using the
taxon_id attribute to include only some annotations, or exclude some. The
filter is based on the mgkit.taxon.is_ancestor function, and the
mgkit.filter.taxon.filter_taxon_by_id_list. It can also filter a table (tab
separated values) when the first element is an ID and the second is a taxon_id.
An example of a table of this sort is the output of the download-ncbi-taxa.sh
and download-uniprot-taxa.sh, where each accession of a database is associated
to a taxon_id.

Multiple taxon_id can be passed, either for inclusion or exclusion. If both
exclusion and inclusion is used, the first check is on the inclusion and then on
the exclusion. In alternative to passing taxon_id, taxon_names can be passed,
with values such as ‘cellular organisms’ that needs to be quoted. Example:

$ taxon-utils filter -i 2 -in archaea -en prevotella -t taxonomy.pickle in.gff out.gff

Which will keep only line that are from Bacteria (taxon_id=2) and exclude those
from the genus Prevotella. It will be also include Archaea.

Multiple inclusion and exclusion flags can be put:

$ taxon-utils filter -i 2 -i 2172 -t taxonomy in.gff out.gff

In particular, the inclusion flag is tested first and then the exclusion is
tested. So a line like this one:

printf "TEST\t838\nTEST\t1485" | taxon-utils filter -p -t taxonomy.pickle -i 2 -i 1485 -e 838

Will produce TEST 1485, because both Prevotella (838) and Clostridium (1485)
are Bacteria (2) OR Prevotella, but Prevotella must be excluded according to
the exclusion option. This line also illustrate that a tab-separated file, where
the second column contains taxon IDs, can be filtered. In particular it can be
applied to files produced by download-ncbi-taxa.sh or
download-uniprot-taxa.sh (see Download Taxonomy).

Warning

Annotations with no taxon_id are not included in the output of both filters

Convert Taxa Tables to HDF5

This command is used to convert the taxa tables download from Uniprot and NCBI,
using the scripts mentioned in download-data,
download-uniprot-taxa.sh and download-ncbi-taxa into a HDF5 file that can
be used with the addtaxa command in add-gff-info - Add informations to GFF annotations.

The advantage is a faster lookup of the IDs. The other is a smaller memory
footprint when a great number of annotations are kept in memory.

Changes

Changed in version 0.3.4: changed interface and behaviour for filter, also now can filter tables;
lca has changed the interface and allows the output of a 2 column table

Changed in version 0.3.1: added to_hdf command

Changed in version 0.3.1: added -j option to lca, which outputs a JSON file with the LCA results

Changed in version 0.3.0: added -k and -kt options for Krona output, lineage now includes the LCA
also added -a option to select between lineages with only ranked taxa.
Now it defaults to all components.

Changed in version 0.2.6: added feat-type option to lca command, added phylum output to nolca

New in version 0.2.5.

	
mgkit.workflow.taxon_utils.get_taxon_info(taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.validate_taxon_ids(taxon_ids, taxonomy)

	

	
mgkit.workflow.taxon_utils.validate_taxon_names(taxon_names, taxonomy)

	

	
mgkit.workflow.taxon_utils.write_json(lca_dict, seq_id, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_krona(file_handle, taxonomy, taxon_id, only_ranked)

	

	
mgkit.workflow.taxon_utils.write_lca_gff(file_handle, seq_id, seq, taxon_id, taxon_name, lineage, feat_type)

	

	
mgkit.workflow.taxon_utils.write_lca_tab(file_handle, seq_id, taxon_id, taxon_name, rank, lineage)

	

	
mgkit.workflow.taxon_utils.write_lca_tab_simple(file_handle, seq_id, taxon_id)

	

	
mgkit.workflow.taxon_utils.write_no_lca(file_handle, seq_id, taxon_ids, extra=None)

	

 mgkit.workflow.utils module

mgkit.workflow.utils module

Utility functions for workflows

	
class mgkit.workflow.utils.CiteAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show citation for the framework')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Argparse action to print the citation, using the mgkit.cite()
function.

	
class mgkit.workflow.utils.PrintManAction(option_strings, dest='==SUPPRESS==', default='==SUPPRESS==', help='Show the script manual', manual='')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

New in version 0.2.6.

Argparse action to print the manual

	
mgkit.workflow.utils.add_basic_options(parser, manual='')

	
Changed in version 0.2.6: added quiet option

Adds verbose and version options to the option parser

	
mgkit.workflow.utils.cite_callback(ctx, param, value)

	

	
mgkit.workflow.utils.exit_script(message, ret_value)

	Used to exit the script with a return value

 mgkit.align module

mgkit.align module

Module dealing with BAM/SAM files

	
class mgkit.align.SamtoolsDepth(file_handle, num_seqs=10000, max_size=1000000, max_size_dict=None)

	Bases: future.types.newobject.newobject

Changed in version 0.4.0: uses pandas.SparseArray now. It should use less memory, but needs
pandas version > 0.24

New in version 0.3.0.

A class used to cache the results of read_samtools_depth(), while
reading only the necessary data from a`samtools depth -aa` file.

	
data = None

	

	
file_handle = None

	

	
max_size = None

	

	
max_size_dict = None

	

	
region_coverage(seq_id, start, end)

	Returns the mean coverage of a region. The start and end parameters
are expected to be 1-based coordinates, like the correspondent
attributes in mgkit.io.gff.Annotation or
mgkit.io.gff.GenomicRange.

If the sequence for which the coverage is requested is not found, the
depth file is read (and cached) until it is found.

	Parameters

	
	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence for which to return mean coverage

	start (int [https://docs.python.org/3/library/functions.html#int]) – start of the region

	end (int [https://docs.python.org/3/library/functions.html#int]) – end of the region

	Returns

	mean coverage of the requested region

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
mgkit.align.add_coverage_info(annotations, bam_files, samples, attr_suff='_cov')

	
Changed in version 0.3.4: the coverage now is returned as floats instead of int

Adds coverage information to annotations, using BAM files.

The coverage information is added for each sample as a ‘sample_cov’ and the
total coverage as as ‘cov’ attribute in the annotations.

Note

The bam_files and sample variables must have the same order

	Parameters

	
	annotations (iterable) – iterable of annotations

	bam_files (iterable) – iterable of pysam.Samfile instances

	sample (iterable) – names of the samples for the BAM files

	
mgkit.align.covered_annotation_bp(files, annotations, min_cov=1, progress=False)

	
New in version 0.1.14.

Returns the number of base pairs covered of annotations over multiple
samples.

	Parameters

	
	files (iterable) – an iterable that returns the alignment file names

	annotations (iterable) – an iterable that returns annotations

	min_cov (int [https://docs.python.org/3/library/functions.html#int]) – minumum coverage for a base to counted

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a progress bar is used

	Returns

	a dictionary whose keys are the uid and the values the number of
bases that are covered by reads among all samples

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.align.get_region_coverage(bam_file, seq_id, feat_from, feat_to)

	Return coverage for an annotation.

Note

feat_from and feat_to are 1-based indexes

	Parameters

	
	bam_file (Samfile) – instance of pysam.Samfile

	seq_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence id

	feat_from (int [https://docs.python.org/3/library/functions.html#int]) – start position of feature

	feat_to (int [https://docs.python.org/3/library/functions.html#int]) – end position of feature

	Return int

	coverage array for the annotation

	
mgkit.align.read_samtools_depth(file_handle, num_seqs=10000, seq_ids=None)

	
Changed in version 0.4.0: now returns 3 array, instead of 2. Also added seq_ids to skip lines

Changed in version 0.3.4: num_seqs can be None to avoid a log message

New in version 0.3.0.

Reads a samtools depth file, returning a generator that yields the
array of each base coverage on a per-sequence base.

Note

The information on position is not used, to use numpy and save memory.
samtools depth should be called with the -aa option:

`samtools depth -aa bamfile`

This options will output both base position with 0 coverage and
sequneces with no aligned reads

	Parameters

	
	file_handle (file) – file handle of the coverage file

	num_seqs (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – number of sequence that fires a log message. If
None, no message is triggered

	seq_ids (dict [https://docs.python.org/3/library/stdtypes.html#dict], set [https://docs.python.org/3/library/stdtypes.html#set]) – a hashed container like a dictionary or set with
the sequences to return

	Yields

	tuple – the first element is the sequence identifier, the second one
is the numpy array with the positions, the third element is the
numpy array with the coverages

 mgkit.consts module

mgkit.consts module

Module containing constants for the filter package

 mgkit.graphs module

mgkit.graphs module

New in version 0.1.12.

Graph module

	
class mgkit.graphs.Reaction(kegg_id, substrates, products, reversible, orthologs, pathway)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

New in version 0.4.0.

Object used to hold information about a reaction entry in Kegg

	
__eq__(other)

	Tests equality by comparing the IDs and the compounds

	
cmp_compounds(other)

	Compares the substrates and products of the current instance with those
of another one, using information about the reversibility of the
reaction.

	
irreversible_paths = None

	

	
kegg_id = None

	

	
orthologs = None

	

	
pathways

	Set which includes all the pathways in which the reaction was found

	
products = None

	

	
reversible

	Property that returns the reversibility of the reaction according to
the information in the pathways. Returns True if the number of pathways
in which the reaction was observed as reversible is greater or equal
than the number of pathwaysin which the reaction was observerd as
irreversible.

	
reversible_paths = None

	

	
substrates = None

	

	
to_edges()

	Returns a generator of edges to be used when building a graph, along
with an attribute that specify if the reaction is reversible.

	
to_edges_compounds()

	

	
to_nodes()

	Returns a generator that returns the nodes associated with reaction,
to be used in a graph, along with attributes about the type of node
(reaction or compound).

	
update(other)

	Updates the current instance with information from another instance.
the underlining sets that hold the information are update with those
from the other instance.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the ID of the reaction is different

	
mgkit.graphs.add_module_compounds(graph, rn_defs)

	
New in version 0.3.1.

Modify in-place a graph, by adding additional compounds from a dictionary
of definitions. It uses the reversible/irreversible information for each
reaction to add the correct number of edges to the graph.

	Parameters

	
	graph (graph) – a graph to update with additional compounds

	rn_defs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary, whose keys are reactions IDs and the
values are instances of mgkit.kegg.KeggReaction

	
mgkit.graphs.annotate_graph_nodes(graph, attr, id_map, default=None, conv=None)

	
New in version 0.1.12.

Changed in version 0.4.0: added conv parameter and reworked internals

Add/Changes nodes attribute attr using a dictionary of ids->values.

Note

If the id is not found in id_map:

	default is None: no value added for that node

	default is not None: the node attribute will be set to default

	Parameters

	
	graph – the graph to annotate

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – the attribute to annotate

	id_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary with the values for each node

	default – the value used in case an id is not found in id_map, if
None, the attribute is not set for missing values

	conv (func) – function to convert the value to another type

	
mgkit.graphs.build_graph(id_links, name, edge_type='', weight=0.5)

	
New in version 0.1.12.

Builds a networkx graph from a dictionary of nodes, as outputted by
mgkit.kegg.KeggClientRest.get_pathway_links(). The graph is
undirected, and all edges weight are the same.

	Parameters

	
	id_links (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the links

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the graph

	edge_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional name for the edge_type attribute
set for each edge

	weight (float [https://docs.python.org/3/library/functions.html#float]) – the weight assigned to each edge in the graph

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.build_weighted_graph(id_links, name, weights, edge_type='')

	
New in version 0.1.14.

Builds a networkx graph from a dictionary of nodes, as outputted by
mgkit.kegg.KeggClientRest.get_pathway_links(). The graph is
undirected, and all edges weight are the same.

	Parameters

	
	id_links (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the links

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the graph

	edge_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional name for the edge_type attribute
set for each edge

	weight (float [https://docs.python.org/3/library/functions.html#float]) – the weight assigned to each edge in the graph

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.copy_edges(g, graph1, name=None, **kwd)

	
New in version 0.1.12.

Used by link_nodes() to copy edges

	
mgkit.graphs.copy_nodes(g, graph1, name=None, id_attr=None, **kwd)

	
New in version 0.1.12.

Used by link_nodes() to copy nodes

	
mgkit.graphs.filter_graph(graph, id_list, filter_func=<function <lambda>>)

	
New in version 0.1.12.

Filter a graph based on the id_list provided and the filter function
used to test the id attribute of each node.

A node is removed if filter_func returns True on a node and its id
attribute is not in id_list

	Parameters

	
	graph – the graph to filter

	id_list (iterable) – the list of nodes that are to remain in the
graph

	filter_func (func) – function which accept a single parameter and
return a boolean

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.from_kgml(entry, graph=None, rn_ids=None)

	
New in version 0.3.1.

Given a KGML file (as string), representing a pathway in Kegg, returns a
networkx DiGraph, using reaction directionality included in the KGML. If a
reaction is reversible, 2 edges (from and to) for each compound/reaction
pair are added, giving the bidirectionality.

Note

substrate and products included in a KGML don’t represent the complete
reaction, excluding in general cofactors or more general terms.
Those can be added using add_module_compounds(), which may be
more useful when used with a restricted number of reactions (e.g.
a module)

	Parameters

	
	entry (str [https://docs.python.org/3/library/stdtypes.html#str]) – KGML file as a string, or anything that can be passed to
ElementTree

	graph (graph) – an instance of a networkx DiGraph if the network is to
be updated with a new KGML, if None a new one is created

	rn_ids (set [https://docs.python.org/3/library/stdtypes.html#set]) – a set/list of reaction IDs that are to be included, if
None all reactions are used

	Returns

	a networkx DiGraph with the reaction/compounds

	Return type

	graph

	
mgkit.graphs.link_graph(graphs, edge_links)

	
New in version 0.1.12.

Link nodes of a set of graphs using the specifics in edge_links.
The resulting graph nodes are renamed, and the nodes that are shared
between the graphs linked.

	Parameters

	
	graphs – iterable of graphs

	edge_links – iterable with function, edge_type and weight for the
links between graphs

	Returns

	an instance of networkx.Graph

	Return type

	graph

	
mgkit.graphs.link_nodes(g, graph1, graph2, id_filter, link_type, weight)

	
New in version 0.1.12.

Used by link_graph() to link nodes with the same id

	
mgkit.graphs.merge_kgmls(kgmls)

	
New in version 0.4.0.

Parses multiple KGMLs and merges the reactions from them.

	Parameters

	kgmls (iterable) – iterable of KGML files (content) to be passed to
parse_kgml_reactions()

	Returns

	dictionary with the reactions from amm te KGML files

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.graphs.parse_kgml_reactions(kgml)

	
New in version 0.4.0.

Parses a KGML for reactions, returning a dictionary with instances of
Reaction as values and the IDs as keys.

	Parameters

	kgml (str [https://docs.python.org/3/library/stdtypes.html#str]) – the KGML file content as a string (to be passed)

	Returns

	dictionary of ID->Reaction

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.graphs.rename_graph_nodes(graph, name_func=None, exclude_ids=None)

	

 mgkit.kegg module

mgkit.kegg module

Module containing classes and functions to access Kegg data

	
class mgkit.kegg.KeggClientRest(cache=None)

	Bases: future.types.newobject.newobject

Changed in version 0.3.1: added a cache attribute for some methods

Kegg REST client

The class includes methods and data to use the REST API provided by Kegg.
At the moment it provides methods to for ‘link’, ‘list’ and ‘get’
operations,

Kegg REST API [http://www.kegg.jp/kegg/rest/keggapi.html]

	
api_url = 'http://rest.kegg.jp/'

	

	
cache = None

	

	
contact = None

	

	
conv(target_db, source_db, strip=True)

	
New in version 0.3.1.

Kegg Help:

http://rest.kegg.jp/conv/<target_db>/<source_db>

(<target_db> <source_db>) = (<kegg_db> <outside_db>) | (<outside_db> <kegg_db>)

For gene identifiers:
<kegg_db> = <org>
<org> = KEGG organism code or T number
<outside_db> = ncbi-proteinid | ncbi-geneid | uniprot

For chemical substance identifiers:
<kegg_db> = drug | compound | glycan
<outside_db> = pubchem | chebi
http://rest.kegg.jp/conv/<target_db>/<dbentries>

For gene identifiers:
<dbentries> = database entries involving the following <database>
<database> = <org> | genes | ncbi-proteinid | ncbi-geneid | uniprot
<org> = KEGG organism code or T number

For chemical substance identifiers:
<dbentries> = database entries involving the following <database>
<database> = drug | compound | glycan | pubchem | chebi

Examples

>>> kc = KeggClientRest()
>>> kc.conv('ncbi-geneid', 'eco')
{'eco:b0217': {'ncbi-geneid:949009'},
 'eco:b0216': {'ncbi-geneid:947541'},
 'eco:b0215': {'ncbi-geneid:946441'},
 'eco:b0214': {'ncbi-geneid:946955'},
 'eco:b0213': {'ncbi-geneid:944903'},
...
>>> kc.conv('ncbi-proteinid', 'hsa:10458+ece:Z5100')
{'10458': {'NP_059345'}, 'Z5100': {'AAG58814'}}

	
cpd_desc_re = <_sre.SRE_Pattern object>

	

	
cpd_re = <_sre.SRE_Pattern object>

	

	
empty_cache(methods=None)

	
New in version 0.3.1.

Empties the cache completely or for a specific method(s)

	Parameters

	methods (iterable, str [https://docs.python.org/3/library/stdtypes.html#str]) – string or iterable of strings that are
part of the cache. If None the cache is fully emptied

	
find(query, database, options=None, strip=True)

	
New in version 0.3.1.

Kegg Help:

http://rest.kegg.jp/find/<database>/<query>

	<database> = pathway | module | ko | genome | <org> | compound | glycan |

	reaction | rclass | enzyme | disease | drug | dgroup | environ |
genes | ligand

<org> = KEGG organism code or T number

http://rest.kegg.jp/find/<database>/<query>/<option>

<database> = compound | drug
<option> = formula | exact_mass | mol_weight

Examples

>>> kc = KeggClientRest()
>>> kc.find('CH4', 'compound')
{'C01438': 'Methane; CH4'}
>>> kc.find('K00844', 'genes', strip=False)
{'tped:TPE_0072': 'hexokinase; K00844 hexokinase [EC:2.7.1.1]',
...
>>> kc.find('174.05', 'compound', options='exact_mass')
{'C00493': '174.052823',
 'C04236': '174.052823',
 'C16588': '174.052823',
 'C17696': '174.052823',
 'C18307': '174.052823',
 'C18312': '174.052823',
 'C21281': '174.052823'}

	
get_entry(k_id, option=None)

	
Changed in version 0.3.1: this is now cached

The method abstract the use of the ‘get’ operation in the Kegg API

	Parameters

	
	k_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – kegg id of the resource to get

	option (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional, to specify a format

	
get_ids_names(target='ko', strip=True)

	
New in version 0.1.13.

Changed in version 0.3.1: the call is now cached

Returns a dictionary with the names/description of all the id of a
specific target, (ko, path, cpd, etc.)

If strip=True the id will stripped of the module abbreviation (e.g.
md:M00002->M00002)

	
get_ortholog_pathways()

	Gets ortholog pathways, replace ‘map’ with ‘ko’ in the id

	
get_pathway_links(pathway)

	Returns a dictionary with the mappings KO->compounds for a specific
Pathway or module

	
get_reaction_equations(ids, max_len=10)

	Get the equation for the reactions

	
id_prefix = {'C': 'cpd', 'K': 'ko', 'R': 'rn', 'k': 'map', 'm': 'path'}

	

	
ko_desc_re = <_sre.SRE_Pattern object>

	

	
link(target, source, options=None)

	
New in version 0.2.0.

Implements “link” operation in Kegg REST

http://www.genome.jp/linkdb/

	
link_ids(target, kegg_ids, max_len=50)

	
Changed in version 0.3.1: removed strip and cached the results

The method abstract the use of the ‘link’ operation in the Kegg API

The target parameter can be one of the following:

pathway | brite | module | disease | drug | environ | ko | genome |
<org> | compound | glycan | reaction | rpair | rclass | enzyme

<org> = KEGG organism code or T number

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – the target db

	ids – can be either a single id as a string or a list of ids

	strip (bool [https://docs.python.org/3/library/functions.html#bool]) – if the prefix (e.g. ko:K00601) should be stripped

	max_len (int [https://docs.python.org/3/library/functions.html#int]) – the maximum number of ids to retrieve with each
request, should not exceed 50

	Return dict

	dictionary mapping requested id to target id(s)

	
list_ids(k_id)

	The method abstract the use of the ‘list’ operation in the Kegg API

The k_id parameter can be one of the following:

pathway | brite | module | disease | drug | environ | ko | genome |
<org> | compound | glycan | reaction | rpair | rclass | enzyme

<org> = KEGG organism code or T number

	Parameters

	k_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – kegg database to get list of ids

	Return list

	list of ids in the specified database

	
load_cache(file_handle)

	
New in version 0.3.1.

Loads the cache from file

	
rn_eq_re = <_sre.SRE_Pattern object>

	

	
rn_name_re = <_sre.SRE_Pattern object>

	

	
write_cache(file_handle)

	
New in version 0.3.1.

Write the cache to file

	
class mgkit.kegg.KeggModule(entry=None, old=False)

	Bases: future.types.newobject.newobject

New in version 0.1.13.

Used to extract information from a pathway module entry in Kegg

The entry, as a string, can be either passed at instance creation or with
KeggModule.parse_entry()

	
classes = None

	

	
compounds = None

	

	
entry = ''

	

	
find_submodules()

	
New in version 0.3.0.

Returns the possible submodules, as a list of tuples where the elements
are the first and last compounds in a submodule

	
first_cp

	Returns the first compound in the module

	
last_cp

	Returns the first compound in the module

	
name = ''

	

	
parse_entry(entry)

	Parses a Kegg module entry and change the instance values. By default
the reactions IDs are substituted with the KO IDs

	
parse_entry2(entry)

	
New in version 0.3.0.

Parses a Kegg module entry and change the instance values. By default
the reactions IDs are NOT substituted with the KO IDs.

	
static parse_reaction(line, ko_ids=None)

	
Changed in version 0.3.0: cleaned the parsing

parses the lines with the reactions and substitute reaction IDs with
the corresponding KO IDs if provided

	
reactions = None

	

	
to_edges(id_only=None)

	
Changed in version 0.3.0: added id_only and changed to reflect changes in reactions

Returns the reactions as edges that can be supplied to make graph.

	Parameters

	id_only (None [https://docs.python.org/3/library/constants.html#None], iterable) – if None the returned edges are for the
whole module, if an iterable (converted to a set [https://docs.python.org/3/library/stdtypes.html#set]),
only edges for those reactions are returned

	Yields

	tuple – the elements are the compounds and reactions in the module

	
mgkit.kegg.parse_reaction(line, prefix=('C', 'G'))

	
New in version 0.3.1.

Parses a reaction equation from Kegg, returning the left and right
components. Needs testing

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – reaction string

	Returns

	left and right components as sets

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the

 mgkit.logger module

mgkit.logger module

Module configuring log information

	
class mgkit.logger.ColorFormatter(fmt=None, datefmt=None)

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

	
colors = {'CRITICAL': 'red', 'DEBUG': 'blue', 'ERROR': 'magenta', 'INFO': 'green', 'WARNING': 'yellow'}

	

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
mgkit.logger.config_log(level=10, output=<open file '<stderr>', mode 'w'>)

	Minimal configuration of :mod`logging` module, default to debug level and
the output is printed to standard error

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – logging level

	output (file) – file to which write the log

	
mgkit.logger.config_log_to_file(level=10, output=None)

	
New in version 0.1.14.

Minimal configuration of :mod`logging` module, default to debug level and
the output is printed to script name, using sys.argv[0].

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – logging level

	output (file) – file to which write the log

 mgkit.simple_cache module

mgkit.simple_cache module

	
class mgkit.simple_cache.memoize(func)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

a cache found on the PythonDecoratorLibrary [https://wiki.python.org/moin/PythonDecoratorLibrary#Alternate_memoize_as_dict_subclass]

Not sure about the license for it.

 mgkit.taxon module

mgkit.taxon module

This module gives access to Uniprot taxonomy data. It also defines classes
to filter, order and group data by taxa

	
exception mgkit.taxon.NoLcaFound

	Bases: exceptions.Exception

New in version 0.1.13.

Raised if no lowest common ancestor can be found in the taxonomy

	
mgkit.taxon.TaxonTuple

	alias of mgkit.taxon.UniprotTaxonTuple

	
class mgkit.taxon.Taxonomy(fname=None)

	Bases: future.types.newobject.newobject

Class that contains the whole Uniprot taxonomy. Defines some methods to
easy access of taxonomy. Follows the conventions of NCBI Taxonomy.

Defines:

	methods to load taxonomy from a pickle file or a generic file handle

	can be iterated over and returns a generator its UniprotTaxon instances

	can be used as a dictionary, in which the key is a taxon_id and the value
is its UniprotTaxon instance

	
__contains__(taxon)

	Returns True if the taxon is in the taxonomy

Accepts an int (check for taxon_id) or an instance of UniprotTaxon

	
__getitem__(taxon_id)

	Defines dictionary behavior. Key is a taxon_id, the returned value is a
UniprotTaxon instance

	
__iter__()

	Defines iterable behavior. Returns a generator for UniprotTaxon instances

	
__len__()

	Returns the number of taxa contained

	
__repr__()

	
New in version 0.2.5.

	
add_lineage(**lineage)

	
New in version 0.3.1.

Adds a lineage to the taxonomy. It’s passed by keyword arguments, where
each key is a value in the TAXON_RANKS rankes and the value is the
scientific name. Appended underscores ‘_’ will be stripped from the
rank name. This is for cases such as class where the key is a reserved
word in Python. Also one extra node can be added, such as
strain/cultivar/subspecies and so on, but one only is expected to be
passed.

	Parameters

	lineage (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the lineage as a keyword arguments

	Returns

	the taxon_id of the last element in the lineage

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if more than a keyword argument is not contained in

	TAXON_RANKS

	
add_taxon(taxon_name, common_name='', rank='no rank', parent_id=None)

	
New in version 0.3.1.

Adds a taxon to the taxonomy. If a taxon with the same name and rank is
found, its taxon_id is returned, otherwise a new taxon_id is returned.

	Parameters

	
	taxon_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – scientific name of the taxon

	common_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – common name

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank, defaults to ‘no rank’

	parent_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id of the parent, defaults to None, which
is the taxonomy root

	Returns

	the taxon_id of the added taxon (if new), or the taxon_id of
the taxon with the same name and rank found in the taxonomy

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if more than one taxon has already the passed name and

	rank and it can’t be resolved by looking at the parent_id passed,

	the exception is raised.

	
drop_taxon(taxon_id)

	
New in version 0.3.1.

Drops a taxon and all taxa below it in the taxonomy. Also reset the
name map for conistency.

	Parameters

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to drop from the taxonomy

	
find_by_name(s_name, rank=None, strict=True)

	
Changed in version 0.2.3: the search is now case insensitive

Changed in version 0.3.1: added rank and strict parameter

Returns the taxon IDs associated with the scientific name provided

	Parameters

	
	s_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the scientific name

	rank (str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]) – return only a taxon_id of a specific rank

	strict (book) – if True and rank is not None, KeyError will be
raised if multiple taxa have the same name and rank

	Returns

	a reference to the list of IDs that have for s_name, if
rank is None. If rank is not None and one taxon is found, its
taxon_id is returned, or None if no taxon is found. If strict is
True and rank is not None, the set of taxon_ids found is
resturned.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If multiple taxa are found, a KeyError exception is

	raised.

	
gen_name_map()

	
Changed in version 0.2.3: names are stored in the mapping as lowercase

Generate a name map, where to each scientific name in the taxonomy an
id is associated.

	
get_lineage(taxon_id, names=False, only_ranked=True, with_last=True)

	
New in version 0.3.1.

Proxy for get_lineage(), with changed defaults

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to return the lineage

	names (bool [https://docs.python.org/3/library/functions.html#bool]) – if the elements of the list are converted into the
scientific names

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – only return the ranked taxa

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – include the taxon_id passed to the list

	Returns

	the lineage of the passed taxon_id as a list of IDs or names

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_lineage_string(taxon_id, only_ranked=True, with_last=True, sep=';', rank=None)

	
New in version 0.3.3.

Generates a lineage string, with the possibility of getting another
ranked taxon (via Taxonomy.get_ranked_taxon()) to another
rank, such as phylum.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id to return the lineage

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – only return the ranked taxa

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – include the taxon_id passed to the list

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator used to join the lineage string

	rank (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – if None the full lineage is returned, otherwise
the lineage will be cut to the specified rank

	Returns

	lineage string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_name_map()

	Returns a taxon_id->s_name dictionary

	
get_ranked_id(taxon_id, rank=None, it=False, include_higher=True)

	
New in version 0.3.4.

Gets the ranked taxon of another one. Useful when it’s better to get a
taxon_id instead of an instance of TaxonTuple. Internally, it
relies on Taxonomy.get_ranked_taxon().

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id

	rank (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – passed over

	it (bool [https://docs.python.org/3/library/functions.html#bool]) – determines the return value. if True, a list is returned

	include_higher (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, any rank higher than the requested
may be returned. If False and the rank cannot be returned, None
is returned

	Returns

	The type returned is based on the it paramenter. If
it is True, the return value is a list with the taxon_id of the
ranked taxon as the sole value. If False, the returned value is the
taxon_id. include_higher determines if the return value should
be None if the exact rank was not found and include_higher is
False

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_ranked_taxon(taxon_id, rank=None, ranks=('superkingdom', 'kingdom', 'phylum', 'class', 'subclass', 'order', 'family', 'genus', 'species'), roots=False)

	
Changed in version 0.1.13: added roots argument

Traverse the branch of which the taxon argument is the leaf backward,
to get the specific rank to which the taxon belongs to.

Warning

the roots options is kept for backward compatibility and should be
be set to False

	Parameters

	
	taxon_id – id of the taxon or instance of UniprotTaxon

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – string that specify the rank, if None, the first valid
rank will be searched. (i.e. the first with a value different from ‘’)

	ranks – tuple of all taxonomy ranks, default to the default module
value

	roots (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, uses TAXON_ROOTS to solve the root
taxa

	Returns

	instance of TaxonTuple for the rank found.

	
is_ancestor(leaf_id, anc_ids)

	
Changed in version 0.1.13: now uses is_ancestor() and changed behavior

Checks if a taxon is the leaf of another one, or a list of taxa.

	Parameters

	
	leaf_id (int [https://docs.python.org/3/library/functions.html#int]) – leaf taxon id

	anc_ids (int [https://docs.python.org/3/library/functions.html#int]) – ancestor taxon id(s)

	Return bool

	True if the ancestor taxon is in the leaf taxon lineage

	
is_ranked_below(taxon_id, rank, equal=True)

	
New in version 0.4.0.

Tests if a taxon_id is below the requested rank.

	Parameters

	
	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxo_id to test

	rank (str [https://docs.python.org/3/library/stdtypes.html#str]) – rank requested

	equal (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if the taxon_id tested may be of the
requested rank

	Returns

	If the passed taxon_id is below the requested rank, it
returns True. If taxon_id is of the rank requested and equal
is True, the return value is True, if equal is False the return
value is False. The return value is False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load_data(file_handle)

	
Changed in version 0.2.3: now can use read msgpack serialised files

Changed in version 0.1.13: now accepts file handles and compressed files (if file names)

Loads serialised data from file name “file_handle” and accepts
compressed files.

if the .msgpack string is found in the file name, the msgpack
package is used instead of pickle

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name to which save the instance data

	
static parse_gtdb_lineage(lineage, sep=';')

	
New in version 0.3.3.

Parse a GTDB lineage, one that defines the rank as a single letter,
followed by __ for each taxon name. Taxa are separated by semicolon
by default. Also the domain rank is renamed into superkingdom
to allow mixing of taxonomies.

	Returns

	dictionary with the parsed lineage, which can be passed to
Taxonomy.add_lineage()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
read_from_gtdb_taxonomy(file_handle, use_gtdb_name=True, sep='\t')

	
New in version 0.3.0.

Changed in version 0.3.1: replaced domain with superkingdom to support get_lineage

Reads a GTDB taxonomy file (tab separated genome_id/taxonomy) and
populate the taxonomy instance. The method also return a dictionary of
genome_id -> taxon_id.

	Parameters

	
	file_handle (file) – file with the taxonomy

	use_gtdb_name (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the names are kept as-is in the
s_name attribute of TaxonTuple and the
“cleaned” version in c_name (e.g. f__Ammonifexaceae ->
Ammonifexaceae). If False, the values are switched

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator between the columns of the file

	Returns

	dictionary of genome_id -> taxon_id, reflecting the created
taxonomy

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Note

the taxon_id are generated, so there’s no guarantee they will be
the same in a successive execution

	
read_from_ncbi_dump(nodes_file, names_file=None, merged_file=None)

	
New in version 0.2.3.

Uses the nodes.dmp and optionally names.dmp, merged.dmp files
from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/ to populate the
taxonomy.

	Parameters

	
	nodes_file (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	names_file (str [https://docs.python.org/3/library/stdtypes.html#str], file, None [https://docs.python.org/3/library/constants.html#None]) – file name or handle to the file,
if None, names won’t be added to the taxa

	merged_file (str [https://docs.python.org/3/library/stdtypes.html#str], file, None [https://docs.python.org/3/library/constants.html#None]) – file name or handle to the file,
if None, pointers to merged taxa won’t be added

	
read_taxonomy(f_handle, light=True)

	
Changed in version 0.2.1: added light parameter

Deprecated since version 0.4.0: use Taxonomy.read_from_ncbi_dump()

Reads taxonomy from a file handle.
The file needs to be a tab separated format return by a query on
Uniprot. If light is True, lineage is not stored to decrease the
memory usage. This is now the default.

New taxa will be added, duplicated taxa will be skipped.

	Parameters

	f_handle (handle) – file handle of the taxonomy file.

	
save_data(file_handle)

	
Changed in version 0.2.3: now can use msgpack to serialise

Saves taxonomy data to a file handle or file name, can write compressed
data if the file ends with “.gz”, “.bz2”

if the .msgpack string is found in the file name, the msgpack
package is used instead of pickle

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name to which save the instance data

	
class mgkit.taxon.UniprotTaxonTuple(taxon_id, s_name, c_name, rank, lineage, parent_id)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
_asdict()

	Return a new OrderedDict which maps field names to their values

	
_replace(**kwds)

	Return a new UniprotTaxonTuple object replacing specified fields with new values

	
c_name

	Alias for field number 2

	
lineage

	Alias for field number 4

	
parent_id

	Alias for field number 5

	
rank

	Alias for field number 3

	
s_name

	Alias for field number 1

	
taxon_id

	Alias for field number 0

	
mgkit.taxon.UniprotTaxonomy

	alias of mgkit.taxon.Taxonomy

	
mgkit.taxon.distance_taxa_ancestor(taxonomy, taxon_id, anc_id)

	
New in version 0.1.16.

Function to calculate the distance between a taxon and the given ancestor

The distance is equal to the number of step in the taxonomy taken to arrive
at the ancestor.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier

	anc_id (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of the ancestor

	Raturns:

	int: distance between taxon_id and it ancestor anc_id

	
mgkit.taxon.distance_two_taxa(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.16.

Calculate the distance between two taxa. The distance is equal to the sum
steps it takes to traverse the taxonomy until their last common ancestor.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of first taxon

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – taxonomic identifier of second taxon

	Raturns:

	int: distance between taxon_id1 and taxon_id2

	
mgkit.taxon.get_ancestor_map(leaf_ids, anc_ids, taxonomy)

	This function returns a dictionary where every leaf taxon is associated
with the right ancestors in anc_ids

ex. {clostridium: [bacteria, clostridia]}

	
mgkit.taxon.get_lineage(taxonomy, taxon_id, names=False, only_ranked=False, with_last=False)

	
New in version 0.2.1.

Changed in version 0.2.5: added only_ranked

Changed in version 0.3.0: added with_last

Returns the lineage of a taxon_id, as a list of taxon_id or taxa names

	Parameters

	
	taxonomy – a Taxonomy instance

	taxon_id (int [https://docs.python.org/3/library/functions.html#int]) – taxon_id whose lineage to return

	names (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the returned list contains the names of the taxa
instead of the taxon_id

	only_ranked (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, only taxonomic levels whose rank is in
data:TAXON_RANKS will be returned

	with_last (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the passed taxon_id is included in the
lineage

	Returns

	lineage of the taxon_id, the elements are int if names is False,
and str when names is True. If a taxon has no scientific name, the
common name is used. If only_ranked is True, the returned list only
contains ranked taxa (according to TAXON_RANKS).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mgkit.taxon.is_ancestor(taxonomy, taxon_id, anc_id)

	
Changed in version 0.1.16: if a taxon_id raises a KeyError, False is returned

Determine if the given taxon id (taxon_id) has anc_id as ancestor.

:param Taxonomy taxonomy: taxonomy used to test
:param int taxon_id: leaf taxon to test
:param int anc_id: ancestor taxon to test against

	Return bool

	True if anc_id is an ancestor of taxon_id or their the same

	
mgkit.taxon.last_common_ancestor(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.13.

Finds the last common ancestor of two taxon IDs. An alias to this function
is in the same module, called lowest_common_ancestor for compatibility.

	Parameters

	
	taxonomy – Taxonomy instance used to test

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – first taxon ID

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – second taxon ID

	Raturns:

	int: taxon ID of the lowest common ancestor

	Raises

	NoLcaFound – if no common ancestor can be found

	
mgkit.taxon.last_common_ancestor_multiple(taxonomy, taxon_ids)

	
New in version 0.2.5.

Applies last_common_ancestor() to an iterable that yields taxon_id
while removing any None values. If the list is of one element, that
taxon_id is returned.

	Parameters

	
	taxonomy – instance of Taxonomy

	taxon_ids (iterable) – an iterable that yields taxon_id

	Returns

	the taxon_id that is the last common ancestor of all taxon_ids
passed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	
	NoLcaFound – when no common ancestry is found or the number of

	taxon_ids is 0

	
mgkit.taxon.lowest_common_ancestor(taxonomy, taxon_id1, taxon_id2)

	
New in version 0.1.13.

Finds the last common ancestor of two taxon IDs. An alias to this function
is in the same module, called lowest_common_ancestor for compatibility.

	Parameters

	
	taxonomy – Taxonomy instance used to test

	taxon_id1 (int [https://docs.python.org/3/library/functions.html#int]) – first taxon ID

	taxon_id2 (int [https://docs.python.org/3/library/functions.html#int]) – second taxon ID

	Raturns:

	int: taxon ID of the lowest common ancestor

	Raises

	NoLcaFound – if no common ancestor can be found

	
mgkit.taxon.parse_ncbi_taxonomy_merged_file(file_handle)

	
New in version 0.2.3.

Parses the merged.dmp file where the merged taxon_id are stored. Available
at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

	Parameters

	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	Returns

	dictionary with merged_id -> taxon_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.taxon.parse_ncbi_taxonomy_names_file(file_handle, name_classes=('scientific name', 'common name'))

	
New in version 0.2.3.

Parses the names.dmp file where the names associated to a taxon_id are
stored. Available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	name_classes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – name classes to save, only the scientific and
common name are stored

	Returns

	dictionary with merged_id -> taxon_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mgkit.taxon.parse_ncbi_taxonomy_nodes_file(file_handle, taxa_names=None)

	
New in version 0.2.3.

Parses the nodes.dmp file where the nodes of the taxonomy are stored.
Available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/.

	Parameters

	
	file_handle (str [https://docs.python.org/3/library/stdtypes.html#str], file) – file name or handle to the file

	taxa_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary with the taxa names (returned from
parse_ncbi_taxonomy_names_file())

	Yields

	TaxonTuple – TaxonTuple instance

	
mgkit.taxon.parse_uniprot_taxon(line, light=True)

	
Changed in version 0.1.13: now accepts empty scientific names, for root taxa

Changed in version 0.2.1: added light parameter

Deprecated since version 0.4.0.

Parses a Uniprot taxonomy file (tab delimited) line and returns a
UniprotTaxonTuple instance. If light is True, lineage is not stored to
decrease the memory usage. This is now the default.

	
mgkit.taxon.taxa_distance_matrix(taxonomy, taxon_ids)

	
New in version 0.1.16.

Given a list of taxonomic identifiers, returns a distance matrix in a
pairwise manner by using distance_two_taxa() on all possible
two element combinations of taxon_ids.

	Parameters

	
	taxonomy – Taxonomy instance

	taxon_ids (iterable) – list taxonomic identifiers

	Returns

	matrix with the pairwise distances of all taxon_ids

	Return type

	pandas.DataFrame

 Changes

Changes

0.4.0

This version was tested under Python 3.5, but the tests (with tox) were run also under Python 2.7. However, from the next release Python 2.7 will be removed gradually (as Python 2.7 won’t be supported/patched anymore from next year).

Added

Added –progress option to several scripts

mgkit.counts.glm:

	mgkit.counts.glm.optimise_alpha_scipy()

	mgkit.counts.glm.optimise_alpha_scipy_function()

mgkit.graphs

	mgkit.graphs.Reaction

	mgkit.graphs.merge_kgmls()

	mgkit.graphs.parse_kgml_reactions()

mgkit.taxon:

	mgkit.taxon.Taxonomy.is_ranked_below()

Changed

Requires pandas version >=0.24 because now a pandas.SparseArray is used for add-gff-info cov_samtools. Before, when reading the depth files from samtools the array for each sequence was kept in memory, while now only the ones in the GFF file are used.

mgkit.align:

	mgkit.align.SamtoolsDepth: uses pandas.SparseArray now. It should use less memory, but needs pandas version > 0.24

	mgkit.align.read_samtools_depth(): now returns 3 array, instead of 2. Also added seq_ids to skip lines

mgkit.io.gff

	mgkit.io.gff.from_gff: added encoding parameter

	mgkit.io.gff.parse_gff: In some cases ASCII decoding is not enough, so it is parametrised now

	mgkit.io.gff.split_gff_file: added encoding parameter

mgkit.mappings.eggnog:

	mgkit.mappings.eggnog.NOGInfo: made file reading compatible with Python 3

mgkit.snps.funcs:

	mgkit.snps.funcs.combine_sample_snps(): added store_uids

Deprecated

	mgkit.io.blast.add_blast_result_to_annotation()

	mgkit.taxon.Taxonomy.read_taxonomy(): use Taxonomy.read_from_ncbi_dump()

	mgkit.taxon.Taxonomy.parse_uniprot_taxon()

Tests

Removed the last portions that used nosetets and better integrated pytest with setup.py. Now uses AppVeyor [https://ci.appveyor.com/project/setsuna80/mgkit] for testing the build and running tests under Python 3.

In cases where the testing environment has no or limited internet connection, tests that require an internet connection can be skipped by setting the following environment variable before running the tests:

$ export MGKIT_TESTS_CONN_SKIP=T

0.3.4

General cleanup and testing release. Major changes:

	general moving to Python2 (2.7) and Python3 (3.5+) support, using the future package and when convenient checks for the version of python installed

	setup includes now all the optional dependencies, since this makes it easier to deal with conda environments

	move to pytest from nose, since it allows some functionality that interests me, along with the reorganisation of the test modules and skips of tests that cannot be executed (like mongodb)

	move from urlib to using requests, which also helps with python3 support

	more careful with some dependencies, like the lzma module and msgpack

	addition of more tests, to help the porting to python3, along with a tox configuration

	matplotlib.pyplot is still in the mgkit.plots.unused, but it is not imported when the parent package is, now. It is still needed in the mgkit.plots.utils functions, so the import has been moved inside the function. This should help with virtual environments and test suites

	renamed mgkit.taxon.UniprotTaxonomy to mgkit.taxon.Taxonomy, since it’s really NCBI taxonomy and it’s preferred to download the data from there. Same for mgkit.taxon.UniprotTaxonTuple to mgkit.taxon.TaxonTuple, with an alias for old name there, but will be removed in a later version

	download_data was removed. Taxonomy should be downloaded using download-taxonomy.sh, and the mgkit.mappings is in need of refactoring to remove old and now ununsed functionality

	added mgkit.taxon.Taxonomy.get_ranked_id()

	using a sphinx plugin to render the jupyter notebooks instead of old solution

	rerun most of the tutorial and updated commands for newest available software (samtools/bcftools) and preferred the SNP calling from bcftools

Scripts

This is a summary of notable changes, it is advised to check the changes in the command line interface for several scripts

	changed several scripts command line interface, to adapt to the use of click

	taxon-utils lca has one options only to specify the output format, also adding the option to output a format that can be used by add-gff-info addtaxa

	taxon-utils filter support the filtering of table files, when they are in a 2-columns format, such as those that are downloaded by download-ncbi-taxa.sh

	removed the eggnog and taxonomy commands from add-gff-info, the former since it’s not that useful, the latter because it’s possible to achieve the same results using taxon-utils with the new output option

	removed the rand command of fastq-utils since it was only for testing and the FastQ parser is the one from mgkit.io.fastq

	substantial changes where made to commands values and sequence of the filter-gff script

	sampling-utils rand_seq now can save the model used and reload it

	removed download_data and download_profiles, since they are not going to be used in the next tutorial and it is preferred now to use BLAST and then find the LCA with taxon-utils

Python3

At the time of writing all tests pass on Python 3.5, but more tests are needed, along with some new ones for the blast parser and the scripts. Some important changes:

	mgkit.io.gff.Annotation uses its uid to hash the instance. This allows the use in sets (mainly for filtering). However, hashing is not supported in mgkit.io.gff.GenomicRange.

	mgkit.io.utils.open_file() now always opens and writes files in binary mode. This is one of the suggestions to keep compatibility between 2.x and 3.x. So if used directly the output must be decoded from ascii, which is the format used in text files (at least bioinformatics). However, this is not required for the parsers, like mgkit.io.gff.parse_gff(), mgkit.io.fasta.load_fasta() along with others (and the correspective write_ functions): they return unicode strings when parsing and decode into ascii when writing.

In general new projects will be worked on using Python 3.5 and the next releases will prioritise that (0.4.0 and later). If bugfixes are needed and Python 3 cannot be used, this version branch (0.3.x) will be used to fix bugs for users.

0.3.3

Added

	module mgkit.counts.glm, with functions used to help the fit of Generalised Linear Models (GLM)

	mgkit.io.fastq.load_fastq_rename()

	added sync, sample_stream and rand_seq commands to sampling-utils script

	mgkit.utils.sequence.extrapolate_model()

	mgkit.utils.sequence.qualities_model_constant()

	mgkit.utils.sequence.qualities_model_decrease()

	mgkit.utils.sequence.random_qualities()

	mgkit.utils.sequence.random_sequences()

	mgkit.utils.sequence.random_sequences_codon()

	mgkit.taxon.UniprotTaxonomy.get_lineage_string()

	mgkit.taxon.UniprotTaxonomy.parse_gtdb_lineage()

	mgkit.net.uniprot.get_gene_info_iter()

Changed

	mgkit.io.fastq.write_fastq_sequence()

	added seq_id as a special attribute to mgkit.io.gff.Annotation.get_attr()

	mgkit.io.gff.from_prodigal_frag() is tested and fixed

	added cache in mgkit.utils.dictionary.HDFDict

	mgkit.utils.sequence.sequence_gc_content() now returns 0.5 when denominator is 0

	add-gff-info addtaxa -a now accept seq_id as lookup, to use output from taxon-utils lca (after cutting output)

Deprecated

	mgkit.io.fastq.convert_seqid_to_old()

0.3.2

Removed deprecated code

0.3.1

This release adds several scripts and commands. Successive releases 0.3.x releases will be used to fix bugs and refine the APIs and CLI. Most importantly, since the publishing of the first paper using the framework, the releases will go torward the removal of as much deprecated code as possible. At the same time, a general review of the code to be able to run on Python3 (probably via the six package) will start. The general idea is to reach as a full removal of legacy code in 0.4.0, while full Python3 compatibility is the aim of 0.5.0, which also means dropping dependencies that are not compatible with Python3.

Added

	mgkit.graphs.from_kgml() to make a graph from a KGML file (allows for directionality)

	mgkit.graphs.add_module_compounds(): updates a graph with compounds information as needed

	mgkit.kegg.parse_reaction(): parses a reaction equation from Kegg

	added –no-frame option to hmmer2gff - Convert HMMER output to GFF, to use non translated protein sequences. Also changed the mgkit.io.gff.from_hmmer() function to enable this behaviour

	added options –num-gt and –num-lt to the values command of filter-gff - Filter GFF annotations to filter based on > and < inequality, in addition to >= and <=

	added uid as command in fasta-utils - Fasta Utilities to make unique fasta headers

	methods to make mgkit.db.mongo.GFFDB to behave like a dictionary (an annotation uid can be used as a key to retrieve it, instead of a query), this includes the possibility to iterate over it, but what is yielded are the values, not the keys (i.e. mgkit.io.gff.Annotation instances, not uid)

	added mgkit.counts.func.from_gff() to load count data stored inside a GFF, as is the case when the counts command of add-gff-info - Add informations to GFF annotations is used’

	added mgkit.kegg.KeggClientRest.conv() and mgkit.kegg.KeggClientRest.find() operations to mgkit.kegg.KeggClientRest

	mgkit.kegg.KeggClientRest now caches calls to several methods. The cache can be written to disk using mgkit.kegg.KeggClientRest.write_cache() or emptied via mgkit.kegg.KeggClientRest.empty_cache()

	added mgkit.utils.dictionary.merge_dictionaries() to merge multiple dictionaries where the keys contain different values

	added a Docker file to make a preconfigured mgkit/jupyter build

	added C functions (using Cython) for tetramer/kmer counting. The C functions are the default, with the pure python implementation having a _ appended to their names. This is because the Cython functions cannot have docstrings

	added mgkit.io.gff.annotation_coverage_sorted()

	added mgkit.io.gff.Annotation.to_dict()

	added mgkit.plots.utils.legend_patches() to create matplotlib patches, to be in legends

	added scripts download IDs to taxa tables from NCBI/Uniprot

	added mgkit.io.utils.group_tuples_by_key()

	added cov command to get-gff-info - Extract informations to GFF annotations and filter-gff - Filter GFF annotations

	added mgkit.io.fasta.load_fasta_prodigal(), to load the fasta file from prodigal for called genes (tested on aminoacids)

	added option to output a JSON file to the lca command in ref:taxon-utils and cov command in get-gff-info - Extract informations to GFF annotations

	added a bash script, sort-gff.sh to help sort a GFF

	added mgkit.taxon.UniprotTaxonomy.get_lineage() which simplifies the use of mgkit.taxon.get_lineage()

	added mgkit.io.fastq.load_fastq() as a simple parser for fastq files

	added a new script, sampling-utils - Resampling Utilities

	added mgkit.utils.common.union_ranges() and mgkit.utils.common.complement_ranges()

	added to_hdf command to taxon-utils - Taxonomy Utilities to create a HDF5 file to lookup taxa tables from NCBI/Uniprot

	added –hdf-table option to addtaxa command in add-gff-info - Add informations to GFF annotations

	mgkit.taxon.UniprotTaxonomy.add_taxon(), mgkit.taxon.UniprotTaxonomy.add_lineage() and mgkit.taxon.UniprotTaxonomy.drop_taxon()

Changed

	changed domain to superkingdom as for NCBI taxonomy in mgkit.taxon.UniprotTaxonomy.read_from_gtdb_taxonomy()

	updated scripts documentation to include installed but non advertised scripts (like translate_seq)

	mgkit.kegg.KeggReaction was reworked to only store the equation information

	some commands in fastq-utils - Fastq Utilities did not support standard in/out, also added the script usage to the script details

	translate_seq now supports standard in/out

	added haplotypes parameter to mgkit.snps.funcs.combine_sample_snps()

	an annotation from mgkit.db.mongo.GFFDB now doesn’t include the lineage, because it conflicts with the string used in a GFF file

	an mgkit.io.gff.Annotation.coverage() now returns a float instead od a int

	moved code from package mgkit.io to mgkit.io.utils

	changed behaviour of mgkit.utils.common.union_range()

	removed mgkit.utills.common.range_substract_()

	added progressbar2 as installation requirement

	changed how mgkit.taxon.UniprotTaxonomy.find_by_name()

Fixed

Besides smaller fixes:

	mgkit.plots.abund.draw_circles() behaviour when sizescale doesn’t have the same shape as order

	parser is now correct for taxon-utils - Taxonomy Utilities, to include the Krona [https://github.com/marbl/Krona/wiki] options

	ondition when a blast output is empty, hence lineno is not initialised when a message is logged

Deprecated

	translate_seq will be removed in version 0.4.0, instead use the similar command in fasta-utils - Fasta Utilities

0.3.0

A lot of bugs were fixed in this release, especially for reading NCBI taxonomy and using the msgpack format to save a UniprotTaxonomy instance. Also added a tutorial for profiling a microbial community using MGKit and BLAST (Profile a Community with BLAST)

Added

	mgkit.align.read_samtools_depth() to read the samtools depth format iteratively (returns a generator)

	mgkit.align.SamtoolsDepth, used to cache the samtools depth format, while requesting region coverage

	mgkit.kegg.KeggModule.find_submodules(), mgkit.kegg.KeggModule.parse_entry2()

	mgkit.mappings.enzyme.get_mapping_level()

	mgkit.utils.dictionary.cache_dict_file() to cache a large dictionary file (tab separated file with 2 columns), an example of its usage is in the documentation

	mgkit.taxon.UniprotTaxonomy.read_from_gtdb_taxonomy() to read a custom taxonomy from a tab separated file. The taxon_id are not guaranteed to be stable between runs

	added cov_samtools to add-gff-info script

	added mgkit.workflow.fasta_utils and correspondent script fasta-utils

	added options -k and -kt to taxon_utils, which outputs a file that can be used with Krona ktImportText (needs to use -q with this script)

Changed

	added no_zero parameter to mgkit.io.blast.parse_accession_taxa_table()

	changed behaviour of mgkit.kegg.KeggModule and some of its methods.

	added with_last parameter to mgkit.taxon.get_lineage()

	added –split option to add-gff-info exp_syn and get-gff-info sequence scripts, to emulate BLAST behaviour in parsing sequence headers

	added -c option to add-gff-info addtaxa

0.2.5

Changed

	added the only_ranked argument to mgkit.taxon.get_lineage()

	add-gff-info addtaxa (add-gff-info - Add informations to GFF annotations) doesn’t preload the GFF file if a dictionary is used instead of the taxa table

	blast2gff blastdb ((blast2gff - Convert BLAST output to GFF) offers more options to control the format of the header in the DB used

	added the sequence command to filter-gff (filter-gff - Filter GFF annotations), to filter all annotations on a per-sequence base, based on mean bitscore or other comparisons

Added

	added mgkit.counts.func.load_counts_from_gff()

	added mgkit.io.blast.parse_accession_taxa_table()

	added mgkit.plots.abund.draw_axis_internal_triangle()

	added representation of mgkit.taxon.UniprotTaxonomy, it show the number of taxa in the instance

	added mgkit.taxon.last_common_ancestor_multiple()

	added taxon_utils (taxon-utils - Taxonomy Utilities) to filter GFF based on their taxonomy and find the last common ancestor for a reference sequence based on either GFF annotations or a list of taxon_ids (in a text file)

0.2.4

Changed

	mgkit.utils.sequence.get_contigs_info() now accepts a dictionary name->seq or a list of sequences, besides a file name (r536)

	add-gff-info counts command now removes trailing commas from the samples list

	the axes are turned off after the dendrogram is plo

Fixed

	the snp_parser script requirements were set wrong in setup.py (r540)

	uncommented lines to download sample data to build documentation (r533)

	add-gff-info uniprot command now writes the lineage attribute correctly (r538)

0.2.3

The installation dependencies are more flexible, with only numpy as being required. To install every needed packages, you can use:

$ pip install mgkit[full]

Added

	new option to pass the query sequences to blast2gff, this allows to add the correct frame of the annotation in the GFF

	added the attributes evalue, subject_start and subject_end to the output of blast2gff. The subject start and end position allow to understand on which frame of the subject sequence the match was found

	added the options to annotate the heatmap with the numbers. Also updated the relative example notebook

	Added the option to reads the taxonomy from NCBI dump files, using mgkit.taxon.UniprotTaxonomy.read_from_ncbi_dump(). This make it faster to get the taxonomy file

	added argument to return information from mgkit.net.embl.datawarehouse_search(), in the form of tab separated data. The argument fields can be used when display is set to report. An example on how to use it is in the function documentation

	added a bash script download-taxonomy.sh that download the taxonomy

	added script venv-docs.sh to build the documentation in HTML under a virtual environment. matplotlib on MacOS X raises a RuntimeError, because of a bug in virtualenv [https://github.com/pypa/virtualenv/issues/54], the documentation can be first build with this, after the script create-apidoc.sh is create the API documentation. The rest of the documentation (e.g. the PDF) can be created with make as usual, afterwards

	added mgkit.net.pfam, with only one function at the moment, that returns the descriptions of the families.

	added pfam command to add-gff-info, using the mentioned function, it adds the description of the Pfam families in the GFF file

	added a new exception, used internally when an additional dependency is needed

Changed

	using the NCBI taxonomy dump has two side effects:

	the scientific/common names are kept as is, not lower cased as was before

	a merged file is provided for taxon_id that changed. While the old taxon_id is kept in the taxonomy, this point to the new taxon, to keep backward compatibility

	renamed the add-gff-info gitaxa command to addtaxa. It now accepts more data sources (dictionaries) and is more general

	changed mgkit.net.embl.datawarehouse_search() to automatically set the limit at 100,000 records

	the taxonomy can now be saved using msgpack [https://github.com/msgpack/msgpack-python], making it faster to read/write it. It’s also more compact and better compression ratio

	the mgkit.plots.heatmap.grouped_spine() now accept the rotation of the labels as option

	added option to use another attribute for the gene_id in the get-gff-info script gtf command

	added a function to compare the version of MGKit used, throwing a warning, when it’s different (mgkit.check_version())

	removed test for old SNPs structures and added the same tests for the new one

	mgkit.snps.classes.GeneSNP now caches the number of synonymous and non-synonymous SNPs for better speed

	mgkit.io.gff.GenomicRange.__contains__() now also accepts a tuple (start, end) or another GenomicRange instance

Fixed

	a bug in the gitaxa (now addtaxa) command: when a taxon_id was not found in the table, the wrong taxon_name and lineage was inserted

	bug in mgkit.snps.classes.GeneSNP that prevented the correct addition of values

	fixed bug in mgkit.snps.funcs.flat_sample_snps() with the new class

	mgkit.io.gff.parse_gff() now correctly handles comment lines and stops parsing if the fasta file at the end of a GFF is found

0.2.2

Added

	new commands for the add-gff-info script (add-gff-info - Add informations to GFF annotations):

	eggnog to add information from eggNOG HMMs (at the moment the 4.5 Viral)

	counts and fpkms to add count data (correctly exported to mongodb)

	gitaxa to add taxonomy information directly from GI identifiers from NCBI

	added blastdb command to blast2gff script (blast2gff - Convert BLAST output to GFF)

	updated MGKit GFF Specifications

	added gtf command to get-gff-info script (get-gff-info - Extract informations to GFF annotations) to convert a GFF to GTF, that is accepted by featureCounts [http://bioinf.wehi.edu.au/featureCounts/], in conjunction with the counts command of add-gff-info

	added method to mgkit.snps.classes.RatioMixIn.calc_ratio_flag to calculate special cases of pN/pS

Changed

	added argument in functions of the mgkit.snps.conv_func to bypass the default filters

	added use_uid argument to mgkit.snps.funcs.combine_sample_snps() to use the uid instead of the gene_id when calculating pN/pS

	added flag_values argument to mgkit.snps.funcs.combine_sample_snps() to use mgkit.snps.classes.RatioMixIn.calc_ratio_flag instead of mgkit.snps.classes.RatioMixIn.calc_ratio

Removed

	deprecated code from the snps package

0.2.1

Added

	added mgkit.db.mongo

	added mgkit.db.dbm

	added mgkit.io.gff.Annotation.get_mappings()

	added mgkit.io.gff.Annotation.to_json()

	added mgkit.io.gff.Annotation.to_mongodb()

	added mgkit.io.gff.from_json()

	added mgkit.io.gff.from_mongodb()

	added mgkit.taxon.get_lineage()

	added mgkit.utils.sequence.get_contigs_info()

	added mongodb and dbm commands to script get-gff-info

	added kegg command to add-gff-info script, caching results and -d option to uniprot command

	added -ft option to blast2gff script

	added -ko option to download_profiles

	added new HMMER tutorial

	added another notebook to the plot examples, for misc. tips

	added a script that downloads from figshare the tutorial data]

	added function to get an enzyme full name (mgkit.mappings.enzyme.get_enzyme_full_name())

	added example notebook for using GFF annotations and the mgkit.db.dbm, mgkit.db.mongo modules

Changed

	mgkit.io.blast.parse_uniprot_blast()

	mgkit.io.gff.Annotation

	mgkit.io.gff.GenomicRange

	mgkit.io.gff.from_hmmer()

	mgkit.taxon.UniprotTaxonomy.read_taxonomy()

	mgkit.taxon.parse_uniprot_taxon()

	changed behaviour of hmmer2gff script

	changed tutorial notebook to specify the directory where the data is

Deprecated

	mgkit.filter.taxon.filter_taxonomy_by_lineage()

	mgkit.filter.taxon.filter_taxonomy_by_rank()

Removed

	removed old filter_gff script

0.2.0

	added creation of wheel distribution

	changes to ensure compatibility with alter pandas versions

	mgkit.io.gff.Annotation.get_ec() now returns a set, reflected changes in tests

	added a –cite option to scripts

	fixes to tutorial

	updated documentation for sphinx 1.3

	changes to diagrams

	added decoration to raise warnings for deprecated functions

	added possibility for mgkit.counts.func.load_sample_counts() info_dict to be a function instead of a dictionary

	consolidation of some eggNOG structures

	added more spine options in mgkit.plots.heatmap.grouped_spine()

	added a length property to mgkit.io.gff.Annotation

	changed filter-gff script to customise the filtering function, from the default one, also updated the relative documentation

	fixed a few plot functions

0.1.16

	changed default parameter for mgkit.plots.boxplot.add_values_to_boxplot()

	Added include_only filter option to the default snp filters mgkit.consts.DEFAULT_SNP_FILTER

	the default filter for SNPs now use an include only option, by default including only protozoa, archaea, fungi and bacteria in the matrix

	added widths parameter to def mgkit.plots.boxplot.boxplot_dataframe() function, added function mgkit.plots.boxplot.add_significance_to_boxplot() and updated example boxplot notebook for new function example

	use_dist and dist_func parameters to the mgkit.plots.heatmap.dendrogram() function

	added a few constants and functions to calculate the distance matrices of taxa: mgkit.taxon.taxa_distance_matrix(), mgkit.taxon.distance_taxa_ancestor() and mgkit.taxon.distance_two_taxa()

	mgkit.kegg.KeggClientRest.link_ids() now accept a dictionary as list of ids

	if the conversion of an Annotation attribute (first 8 columns) raises a ValueError in mgkit.io.gff.from_gff(), by default the parser keeps the string version (cases for phase, where is ‘.’ instead of a number)

	treat cases where an attribute is set with no value in mgkit.io.gff.from_gff()

	added mgkit.plots.colors.palette_float_to_hex() to convert floating value palettes to string

	forces vertical alignment of tick labels in heatmaps

	added parameter to get a consensus sequence for an AA alignment, by adding the nucl parameter to mgkit.utils.sequence.Alignment.get_consensus()

	added mgkit.utils.sequence.get_variant_sequence() to get variants of a sequence, essentially changing the sequence according to the SNPs passed

	added method to get an aminoacid sequence from Annotation in mgkit.io.gff.Annotation.get_aa_seq() and added the possibility to pass a SNP to get the variant sequence of an Annotation in mgkit.io.gff.Annotation.get_nuc_seq().

	added exp_syn command to add-gff-info script

	changed GTF file conversion

	changed behaviour of mgkit.taxon.is_ancestor(): if a taxon_id raises a KeyError, False is now returned. In other words, if the taxon_id is not found in the taxonomy, it’s not an ancestor

	added mgkit.io.gff.GenomicRange.__contains__(). It tests if a position is inside the range

	added mgkit.io.gff.GenomicRange.get_relative_pos(). It returns a position relative to the GenomicRange start

	fixed documentation and bugs (Annotation.get_nuc_seq)

	added mgkit.io.gff.Annotation.is_syn(). It returns True if a SNP is synonymous and False if non-synonymous

	added to_nuc parameter to mgkit.io.gff.from_nuc_blast() function. It to_nuc is False, it is assumed that the hit was against an amino acidic DB, in which case the phase should always set to 0

	reworked internal of snp_parser script. It doesn’t use SNPDat anymore

	updated tutorial

	added ipython notebook as an example to explore data from the tutorial

	cleaned deprecated code, fixed imports, added tests and documentation

0.1.15

	changed name of mgkit.taxon.lowest_common_ancestor() to mgkit.taxon.last_common_ancestor(), the old function name points to the new one

	added mgkit.counts.func.map_counts_to_category() to remap counts from one ID to another

	added get-gff-info script to extract information from GFF files

	script download_data can now download only taxonomy data

	added more script documentation

	added examples on gene prediction

	added function mgkit.io.gff.from_hmmer() to parse HMMER results and return mgkit.io.gff.Annotation instances

	added mgkit.io.gff.Annotation.to_gtf() to return a GTF line, mgkit.io.gff.Annotation.add_gc_content() and mgkit.io.gff.Annotation.add_gc_ratio() to calculate GC content and ratio respectively

	added mgkit.io.gff.parse_gff_files() to parse multiple GFF files

	added uid_used parameter to several functions in mgkit.counts.func

	added mgkit.plots.abund to plot abundance plots

	added example notebooks for plots

	HTSeq is now required only by the scripts that uses it, snp_parser and fastq_utils

	added function to convert numbers when reading from htseq count files

	changed behavior of -b option in add-gff-info taxonomy command

	added mgkit.io.gff.get_annotation_map()

0.1.14

	added ipthon notebooks to the documentation. As of this version the included ones (in docs/source/examples) are for two plot modules. Also added a bash script to convert them into rst files to be included with the documentation. The .rst are not versioned, and they must be rebuild, meaning that one of the requirements for building the docs is to have IPython [http://ipython.org] installed with the notebook extension

	now importing some packages automatically import the subpackages as well

	refactored mgkit.plots into a package, with most of the original functions imported into it, for backward compatibility

	added mgkit.graphs.build_weighted_graph()

	added box_vert parameter in mgkit.plots.boxplot.add_values_to_boxplot(), the default will be changed in a later version (kept for compatibility with older scripts/notebooks)

	added an heatmap module to the plots package. Examples are in the notebook

	added mgkit.align.covered_annotation_bp() to find the number of bp covered by reads in annotations (as opposed to using the annotation length)

	added documentation to mgkit.mappings.eggnog.NOGInfo and an additional method

	added mgkit.net.uniprot.get_uniprot_ec_mappings() as it was used in a few scripts already

	added mgkit.mappings.enzyme.change_mapping_level() and other to deal with EC numbers. Also improved documentation with some examples

	added mgkit.counts.func.load_sample_counts_to_genes() and mgkit.counts.func.load_sample_counts_to_taxon(), for mapping counts to only genes or taxa. Also added index parameter in mgkit.counts.func.map_counts() to accomodate the changes

	added mgkit.net.uniprot.get_ko_to_eggnog_mappings() to get mappings of KO identifiers to eggNOG

	added mgkit.io.gff.split_gff_file() to split a gff into several ones, assuring that all annotations for a sequence is in the same file; useful to split massive GFF files before filtering

	added mgkit.counts.func.load_deseq2_results() to load DESeq2 results in CSV format

	added mgkit.counts.scaling.scale_rpkm() for scale with rpkm a count table

	added caching options to mgkit.counts.func.load_sample_counts() and others

	fixes and improvements to documentation

0.1.13

	added counts package, including functions to load HTSeq-counts results and scaling

	added mgkit.filter.taxon.filter_by_ancestor(), as a convenience function

	deprecated functions in mgkit.io.blast module, added more to parse blast outputs (some specific)

	mgkit.io.fasta.load_fasta() returns uppercase sequences, added a function (mgkit.io.fasta.split_fasta_file()) to split fasta files

	added more methods to mgkit.io.gff.Annotation to complete API from old annotations

	fixed mgkit.io.gff.Annotation.dbq property to return an int (bug in filtering with filter-gff)

	added function to extract the sequences covered by annotations, using the mgkit.io.gff.Annotation.get_nuc_seq() method

	added mgkit.io.gff.correct_old_annotations() to update old annotated GFF to new conventions

	added mgkit.io.gff.group_annotations_by_ancestor() and mgkit.io.gff.group_annotations_sorted()

	moved deprecated GFF classes/modules in mgkit.io.gff_old

	added mgkit.io.uniprot module to read/write Uniprot files

	added mgkit.kegg.KeggClientRest.get_ids_names() to remove old methods to get specific class names used to retrieve (they are deprecated at the moment)

	added mgkit.kegg.KeggModule to parse a Kegg module entry

	added mgkit.net.embl.datawarehouse_search() to search EMBL resources

	made mgkit.net.uniprot.query_uniprot() more flexible

	added/changed plot function in mgkit.plots

	added enum34 as a dependency for Python versions below 3.4

	changed classes to hold SNPs data: deprecated mgkit.snps.classes.GeneSyn, replaced by mgkit.snps.classes.GeneSNP which the enum module for mgkit.snps.classes.SNPType

	added mgkit.taxon.NoLcaFound

	fixed behaviour of mgkit.taxon.UniprotTaxonomy.get_ranked_taxon() for newer taxonomies

	change behaviour of mgkit.taxon.UniprotTaxonomy.is_ancestor() to use module mgkit.taxon.is_ancestor() and accept multiple taxon IDs to test

	mgkit.taxon.UniprotTaxonomy.load_data() now accept compressed data and file handles

	added mgkit.taxon.lowest_common_ancestor() to find the lowest common ancestor of two taxon IDs

	changed behaviour of mgkit.taxon.parse_uniprot_taxon()

	added functions to get GC content, ratio of a sequence and it composition to mgkit.utils.sequence

	added more options to blast2gff script

	added coverage, taxonomy and unipfile to add-gff-info

	refactored snp_parser to use new classes

	added possibility to use sorted GFF files as input for filter-gff to use less memory (the examples show how to use sort in Unix)

0.1.12

	added functions to elongate annotations, measure the coverage of them and diff GFF files in mgkit.io.gff

	added ranges_length and union_ranges to mgkit.utils.common

	added script filter-gff, filter_gff will be deprecated

	added script blast2gff to convert blast output to a GFF

	removed unneeded dependencies to build docs

	added script add-gff-info to add more annotations to GFF files

	added mgkit.io.blast.parse_blast_tab() to parse BLAST tabular format

	added mgkit.io.blast.parse_uniprot_blast() to return annotations from a BLAST tabular file

	added mgkit.graph module

	added classes mgkit.io.gff.Annotation and mgkit.io.gff.GenomicRange and deprecated old classes to handle GFF annotations (API not stable)

	added mgkit.io.gff.DuplicateKeyError raised in parsing GFF files

	added functions used to return annotations from several sources

	added option gff_type in mgkit.io.gff.load_gff()

	added mgkit.net.embl.dbfetch()

	added mgkit.net.uniprot.get_gene_info() and mgkit.net.uniprot.query_uniprot() mgkit.net.uniprot.parse_uniprot_response()

	added apply_func_to_values to mgkit.utils.dictionary

	added mgkit.snps.conv_func.get_full_dataframe(), mgkit.snps.conv_func.get_gene_taxon_dataframe()

	added more tests

0.1.11

	removed rst2pdf for generating a PDF for documentation. Latex is preferred

	corrections to documentation and example script

	removed need for joblib library in translate_seq script: used only if available (for using multiple processors)

	deprecated mgkit.snps.funcs.combine_snps_in_dataframe() and mgkit.snps.funcs.combine_snps_in_dataframe(): mgkit.snps.funcs.combine_sample_snps() should be used

	refactored some tests and added more

	added docs_req.txt to help build the documentation ont readthedocs.org

	renamed mgkit.snps.classes.GeneSyn gid and taxon attributes to gene_id and taxon_id. The old names are still available for use (via properties), but the will be taken out in later versions. Old pickle data should be loaded and saved again before in this release

	added a few convenience functions to ease the use of combine_sample_snps()

	added function mgkit.snps.funcs.significance_test() to test the distributions of genes share between two taxa.

	fixed an issue with deinterleaving sequence data from khmer

	added mgkit.snps.funcs.flat_sample_snps()

	Added method to mgkit.kegg.KeggClientRest to get names for all ids of a certain type (more generic than the various get_*_names)

	added first implementation of mgkit.kegg.KeggModule class to parse a Kegg module entry

	mgkit.snps.conv_func.get_rank_dataframe(), mgkit.snps.conv_func.get_gene_map_dataframe()

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mgkit	

 	
 	
 mgkit.align	

 	
 	
 mgkit.consts	

 	
 	
 mgkit.counts	

 	
 	
 mgkit.counts.func	

 	
 	
 mgkit.counts.glm	

 	
 	
 mgkit.counts.scaling	

 	
 	
 mgkit.db	

 	
 	
 mgkit.db.dbm	

 	
 	
 mgkit.db.mongo	

 	
 	
 mgkit.filter	

 	
 	
 mgkit.filter.common	

 	
 	
 mgkit.filter.gff	

 	
 	
 mgkit.filter.lists	

 	
 	
 mgkit.filter.reads	

 	
 	
 mgkit.filter.taxon	

 	
 	
 mgkit.graphs	

 	
 	
 mgkit.io	

 	
 	
 mgkit.io.blast	

 	
 	
 mgkit.io.fasta	

 	
 	
 mgkit.io.fastq	

 	
 	
 mgkit.io.gff	

 	
 	
 mgkit.io.glimmer	

 	
 	
 mgkit.io.snpdat	

 	
 	
 mgkit.io.uniprot	

 	
 	
 mgkit.io.utils	

 	
 	
 mgkit.kegg	

 	
 	
 mgkit.logger	

 	
 	
 mgkit.mappings	

 	
 	
 mgkit.mappings.cazy	

 	
 	
 mgkit.mappings.eggnog	

 	
 	
 mgkit.mappings.enzyme	

 	
 	
 mgkit.mappings.go	

 	
 	
 mgkit.mappings.pandas_map	

 	
 	
 mgkit.mappings.taxon	

 	
 	
 mgkit.mappings.utils	

 	
 	
 mgkit.net	

 	
 	
 mgkit.net.embl	

 	
 	
 mgkit.net.pfam	

 	
 	
 mgkit.net.uniprot	

 	
 	
 mgkit.net.utils	

 	
 	
 mgkit.plots	

 	
 	
 mgkit.plots.abund	

 	
 	
 mgkit.plots.boxplot	

 	
 	
 mgkit.plots.colors	

 	
 	
 mgkit.plots.heatmap	

 	
 	
 mgkit.plots.utils	

 	
 	
 mgkit.simple_cache	

 	
 	
 mgkit.snps	

 	
 	
 mgkit.snps.classes	

 	
 	
 mgkit.snps.conv_func	

 	
 	
 mgkit.snps.filter	

 	
 	
 mgkit.snps.funcs	

 	
 	
 mgkit.snps.mapper	

 	
 	
 mgkit.taxon	

 	
 	
 mgkit.utils	

 	
 	
 mgkit.utils.common	

 	
 	
 mgkit.utils.dictionary	

 	
 	
 mgkit.utils.sequence	

 	
 	
 mgkit.utils.trans_tables	

 	
 	
 mgkit.workflow	

 	
 	
 mgkit.workflow.add_gff_info	

 	
 	
 mgkit.workflow.blast2gff	

 	
 	
 mgkit.workflow.extract_gff_info	

 	
 	
 mgkit.workflow.fasta_utils	

 	
 	
 mgkit.workflow.fastq_utils	

 	
 	
 mgkit.workflow.filter_gff	

 	
 	
 mgkit.workflow.hmmer2gff	

 	
 	
 mgkit.workflow.json2gff	

 	
 	
 mgkit.workflow.sampling_utils	

 	
 	
 mgkit.workflow.snp_parser	

 	
 	
 mgkit.workflow.taxon_utils	

 	
 	
 mgkit.workflow.utils	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --buffer <buffer>

 	add-gff-info-uniprot command line option

 	
 --cite

 	add-gff-info command line option

 	blast2gff command line option

 	fasta-utils command line option

 	fastq-utils command line option

 	filter-gff command line option

 	get-gff-info command line option

 	json2gff command line option

 	sampling-utils command line option

 	taxon-utils command line option

 	
 --num-eq <num_eq>

 	filter-gff-values command line option

 	
 --num-ge <num_ge>

 	filter-gff-values command line option

 	
 --num-gt <num_gt>

 	filter-gff-values command line option

 	
 --num-le <num_le>

 	filter-gff-values command line option

 	
 --num-lt <num_lt>

 	filter-gff-values command line option

 	
 --progress

 	add-gff-info-addtaxa command line option

 	add-gff-info-counts command line option

 	add-gff-info-cov_samtools command line option

 	add-gff-info-exp_syn command line option

 	add-gff-info-unipfile command line option

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	fasta-utils-translate command line option

 	filter-gff-cov command line option

 	filter-gff-overlap command line option

 	filter-gff-sequence command line option

 	filter-gff-values command line option

 	get-gff-info-cov command line option

 	get-gff-info-mongodb command line option

 	get-gff-info-sequence command line option

 	sampling-utils-rand_seq command line option

 	taxon-utils-filter command line option

 	taxon-utils-lca command line option

 	taxon-utils-to_hdf command line option

 	
 --str-eq <str_eq>

 	filter-gff-values command line option

 	
 --str-in <str_in>

 	filter-gff-values command line option

 	
 --version

 	add-gff-info command line option

 	blast2gff command line option

 	fasta-utils command line option

 	fastq-utils command line option

 	filter-gff command line option

 	get-gff-info command line option

 	json2gff command line option

 	sampling-utils command line option

 	taxon-utils command line option

 	
 -a, --attribute <attribute>

 	filter-gff-sequence command line option

 	
 -a, --fasta-file <fasta_file>

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	
 -a, --gene-attr <gene_attr>

 	add-gff-info-addtaxa command line option

 	
 -a, --only-ranked

 	taxon-utils-lca command line option

 	taxon-utils-lca_line command line option

 	
 -a, --read-model <read_model>

 	sampling-utils-rand_seq command line option

 	
 -a, --sample-alignment <sample_alignment>

 	add-gff-info-coverage command line option

 	
 -a, --sort-attr <sort_attr>

 	filter-gff-overlap command line option

 	
 -a, --use-accession

 	add-gff-info-pfam command line option

 	
 -b, --bitscore <bitscore>

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	taxon-utils-lca command line option

 	
 -c, --cache-table

 	add-gff-info-addtaxa command line option

 	
 -c, --choose-func <choose_func>

 	filter-gff-overlap command line option

 	
 -c, --chunk-size <chunk_size>

 	taxon-utils-to_hdf command line option

 	
 -c, --comparison <comparison>

 	filter-gff-sequence command line option

 	
 -c, --count-files <count_files>

 	add-gff-info-counts command line option

 	
 -c, --email <email>

 	add-gff-info-kegg command line option

 	add-gff-info-uniprot command line option

 	
 -c, --min-coverage <min_coverage>

 	filter-gff-cov command line option

 	
 -c, --no-cache

 	get-gff-info-mongodb command line option

 	
 -d, --const-model

 	sampling-utils-rand_seq command line option

 	
 -d, --depths <depths>

 	add-gff-info-cov_samtools command line option

 	
 -d, --description

 	add-gff-info-kegg command line option

 	
 -d, --dictionary <dictionary>

 	add-gff-info-addtaxa command line option

 	
 -d, --output-dir <output_dir>

 	get-gff-info-dbm command line option

 	
 -d, --protein-names

 	add-gff-info-uniprot command line option

 	
 -db, --db-used <db_used>

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	
 -db, --taxon-db <taxon_db>

 	add-gff-info-addtaxa command line option

 	
 -dbq, --db-quality <db_quality>

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	
 -e, --eggnog

 	add-gff-info-uniprot command line option

 	
 -e, --exclude-taxon-id <exclude_taxon_id>

 	taxon-utils-filter command line option

 	
 -e, --featureCounts

 	add-gff-info-counts command line option

 	
 -e, --skip-no-taxon

 	add-gff-info-addtaxa command line option

 	
 -ec, --enzymes

 	add-gff-info-uniprot command line option

 	
 -en, --exclude-taxon-name <exclude_taxon_name>

 	taxon-utils-filter command line option

 	
 -f, --force-taxon-id

 	add-gff-info-unipfile command line option

 	add-gff-info-uniprot command line option

 	
 -f, --fpkms

 	add-gff-info-counts command line option

 	
 -f, --function <function>

 	filter-gff-sequence command line option

 	
 -f, --hdf-table <hdf_table>

 	add-gff-info-addtaxa command line option

 	
 -f, --out-format <out_format>

 	taxon-utils-lca command line option

 	
 -f, --reference <reference>

 	filter-gff-cov command line option

 	get-gff-info-cov command line option

 	get-gff-info-sequence command line option

 	
 -ft, --feat-type <feat_type>

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	taxon-utils-lca command line option

 	
 -g, --gene-id <gene_id>

 	get-gff-info-gtf command line option

 	
 -gc, --gc-content <gc_content>

 	sampling-utils-rand_seq command line option

 	
 -i, --gene-index <gene_index>

 	blast2gff-blastdb command line option

 	
 -i, --id-attr <id_attr>

 	add-gff-info-pfam command line option

 	
 -i, --include-taxon-id <include_taxon_id>

 	taxon-utils-filter command line option

 	
 -i, --indent <indent>

 	get-gff-info-mongodb command line option

 	
 -i, --infer-params <infer_params>

 	sampling-utils-rand_seq command line option

 	
 -i, --mapping-file <mapping_file>

 	add-gff-info-unipfile command line option

 	
 	
 -in, --include-taxon-name <include_taxon_name>

 	taxon-utils-filter command line option

 	
 -j, --json-out

 	get-gff-info-cov command line option

 	
 -k, --attr-value <attr_value>

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	
 -ko, --kegg_orthologs

 	add-gff-info-uniprot command line option

 	
 -kt, --krona-total <krona_total>

 	taxon-utils-lca command line option

 	
 -l, --length <length>

 	sampling-utils-rand_seq command line option

 	
 -l, --lineage

 	add-gff-info-uniprot command line option

 	
 -l, --value <value>

 	filter-gff-sequence command line option

 	
 -m, --kegg-id <kegg_id>

 	add-gff-info-kegg command line option

 	
 -m, --mapping <mapping>

 	add-gff-info-unipfile command line option

 	add-gff-info-uniprot command line option

 	
 -m, --master-file <master_file>

 	sampling-utils-sync command line option

 	
 -m, --rename

 	taxon-utils-lca command line option

 	
 -m, --save-model <save_model>

 	sampling-utils-rand_seq command line option

 	
 -n, --no-lca <no_lca>

 	taxon-utils-lca command line option

 	taxon-utils-lca_line command line option

 	
 -n, --no-split

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	
 -n, --num-seqs <num_seqs>

 	add-gff-info-cov_samtools command line option

 	sampling-utils-rand_seq command line option

 	
 -n, --number <number>

 	fasta-utils-split command line option

 	get-gff-info-split command line option

 	sampling-utils-sample command line option

 	
 -n, --table-name <table_name>

 	taxon-utils-to_hdf command line option

 	
 -p, --pathways

 	add-gff-info-kegg command line option

 	
 -p, --prefix <prefix>

 	fasta-utils-split command line option

 	get-gff-info-split command line option

 	sampling-utils-sample command line option

 	
 -p, --simple-table

 	taxon-utils-lca command line option

 	
 -p, --table

 	taxon-utils-filter command line option

 	
 -q, --fastq

 	sampling-utils-rand_seq command line option

 	sampling-utils-sample command line option

 	sampling-utils-sample_stream command line option

 	
 -r, --coding-prop <coding_prop>

 	sampling-utils-rand_seq command line option

 	
 -r, --prob <prob>

 	sampling-utils-sample command line option

 	sampling-utils-sample_stream command line option

 	
 -r, --reference <reference>

 	add-gff-info-exp_syn command line option

 	taxon-utils-lca command line option

 	
 -r, --remove-version

 	blast2gff-blastdb command line option

 	
 -r, --rename

 	filter-gff-cov command line option

 	get-gff-info-cov command line option

 	
 -r, --reverse

 	get-gff-info-sequence command line option

 	
 -s, --header-sep <header_sep>

 	blast2gff-blastdb command line option

 	
 -s, --index-size <index_size>

 	taxon-utils-to_hdf command line option

 	
 -s, --samples <samples>

 	add-gff-info-counts command line option

 	add-gff-info-cov_samtools command line option

 	
 -s, --separator <separator>

 	taxon-utils-lca_line command line option

 	
 -s, --size <size>

 	filter-gff-overlap command line option

 	
 -s, --sorted

 	taxon-utils-lca command line option

 	
 -s, --split

 	add-gff-info-exp_syn command line option

 	get-gff-info-sequence command line option

 	
 -s, --strand-specific

 	filter-gff-cov command line option

 	get-gff-info-cov command line option

 	
 -s, --strip

 	fastq-utils-di command line option

 	
 -t, --gene-taxon-table <gene_taxon_table>

 	add-gff-info-addtaxa command line option

 	
 -t, --sorted

 	filter-gff-cov command line option

 	filter-gff-overlap command line option

 	filter-gff-sequence command line option

 	
 -t, --table <table>

 	fasta-utils-uid command line option

 	
 -t, --taxon-id

 	add-gff-info-uniprot command line option

 	
 -t, --taxonomy <taxonomy>

 	get-gff-info-mongodb command line option

 	taxon-utils-filter command line option

 	taxon-utils-lca command line option

 	taxon-utils-lca_line command line option

 	
 -t, --trans-table <trans_table>

 	fasta-utils-translate command line option

 	
 -v, --verbose

 	add-gff-info-addtaxa command line option

 	add-gff-info-counts command line option

 	add-gff-info-cov_samtools command line option

 	add-gff-info-coverage command line option

 	add-gff-info-exp_syn command line option

 	add-gff-info-kegg command line option

 	add-gff-info-pfam command line option

 	add-gff-info-unipfile command line option

 	add-gff-info-uniprot command line option

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	fasta-utils-split command line option

 	fasta-utils-translate command line option

 	fasta-utils-uid command line option

 	fastq-utils-convert command line option

 	fastq-utils-di command line option

 	fastq-utils-il command line option

 	fastq-utils-sort command line option

 	filter-gff-cov command line option

 	filter-gff-overlap command line option

 	filter-gff-sequence command line option

 	filter-gff-values command line option

 	get-gff-info-cov command line option

 	get-gff-info-dbm command line option

 	get-gff-info-gtf command line option

 	get-gff-info-mongodb command line option

 	get-gff-info-sequence command line option

 	get-gff-info-split command line option

 	json2gff-mongodb command line option

 	sampling-utils-rand_seq command line option

 	sampling-utils-sample command line option

 	sampling-utils-sample_stream command line option

 	sampling-utils-sync command line option

 	taxon-utils-filter command line option

 	taxon-utils-lca command line option

 	taxon-utils-lca_line command line option

 	taxon-utils-to_hdf command line option

 	
 -w, --no-wrap

 	get-gff-info-sequence command line option

 	
 -w, --overwrite

 	taxon-utils-to_hdf command line option

 	
 -x, --dist-loc <dist_loc>

 	sampling-utils-rand_seq command line option

 	
 -x, --max-seq <max_seq>

 	sampling-utils-sample command line option

 	sampling-utils-sample_stream command line option

 	
 -x, --taxonomy <taxonomy>

 	add-gff-info-addtaxa command line option

 	
 -z, --gzip

 	fasta-utils-split command line option

 	get-gff-info-split command line option

 	sampling-utils-sample command line option

_

 	
 	__contains__() (mgkit.io.gff.GenomicRange method)

 	(mgkit.taxon.Taxonomy method)

 	__eq__() (mgkit.graphs.Reaction method)

 	__getitem__() (mgkit.db.mongo.GFFDB method)

 	(mgkit.taxon.Taxonomy method)

 	__getnewargs__() (mgkit.taxon.UniprotTaxonTuple method)

 	__getstate__() (mgkit.taxon.UniprotTaxonTuple method)

 	__iter__() (mgkit.db.mongo.GFFDB method)

 	(mgkit.taxon.Taxonomy method)

 	
 	__len__() (mgkit.taxon.Taxonomy method)

 	__repr__() (mgkit.taxon.Taxonomy method)

 	(mgkit.taxon.UniprotTaxonTuple method)

 	_asdict() (mgkit.taxon.UniprotTaxonTuple method)

 	_get_kmers() (in module mgkit.utils.sequence)

 	_replace() (mgkit.taxon.UniprotTaxonTuple method)

 	_sequence_signature() (in module mgkit.utils.sequence)

 	_signatures_matrix() (in module mgkit.utils.sequence)

 	_sliding_window() (in module mgkit.utils.sequence)

A

 	
 	aa_change (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	add() (mgkit.snps.classes.GeneSNP method)

 	
 add-gff-info command line option

 	--cite

 	--version

 	
 add-gff-info-addtaxa command line option

 	--progress

 	-a, --gene-attr <gene_attr>

 	-c, --cache-table

 	-d, --dictionary <dictionary>

 	-db, --taxon-db <taxon_db>

 	-e, --skip-no-taxon

 	-f, --hdf-table <hdf_table>

 	-t, --gene-taxon-table <gene_taxon_table>

 	-v, --verbose

 	-x, --taxonomy <taxonomy>

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-counts command line option

 	--progress

 	-c, --count-files <count_files>

 	-e, --featureCounts

 	-f, --fpkms

 	-s, --samples <samples>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-cov_samtools command line option

 	--progress

 	-d, --depths <depths>

 	-n, --num-seqs <num_seqs>

 	-s, --samples <samples>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-coverage command line option

 	-a, --sample-alignment <sample_alignment>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-exp_syn command line option

 	--progress

 	-r, --reference <reference>

 	-s, --split

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-kegg command line option

 	-c, --email <email>

 	-d, --description

 	-m, --kegg-id <kegg_id>

 	-p, --pathways

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-pfam command line option

 	-a, --use-accession

 	-i, --id-attr <id_attr>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 	
 add-gff-info-unipfile command line option

 	--progress

 	-f, --force-taxon-id

 	-i, --mapping-file <mapping_file>

 	-m, --mapping <mapping>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 add-gff-info-uniprot command line option

 	--buffer <buffer>

 	-c, --email <email>

 	-d, --protein-names

 	-e, --eggnog

 	-ec, --enzymes

 	-f, --force-taxon-id

 	-ko, --kegg_orthologs

 	-l, --lineage

 	-m, --mapping <mapping>

 	-t, --taxon-id

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	add_basic_options() (in module mgkit.workflow.utils)

 	add_blast_result_to_annotation() (in module mgkit.io.blast)

 	add_coverage_info() (in module mgkit.align)

 	add_exp_syn_count() (mgkit.io.gff.Annotation method)

 	add_gc_content() (mgkit.io.gff.Annotation method)

 	add_gc_ratio() (mgkit.io.gff.Annotation method)

 	add_lineage() (mgkit.taxon.Taxonomy method)

 	add_module_compounds() (in module mgkit.graphs)

 	add_seq() (mgkit.utils.sequence.Alignment method)

 	add_seqs() (mgkit.utils.sequence.Alignment method)

 	add_significance_to_boxplot() (in module mgkit.plots.boxplot)

 	add_snp() (mgkit.snps.classes.GeneSNP method)

 	add_taxon() (mgkit.taxon.Taxonomy method)

 	add_uniprot_info() (in module mgkit.workflow.add_gff_info)

 	add_values_to_boxplot() (in module mgkit.plots.boxplot)

 	aggr_filtered_list() (in module mgkit.filter.lists)

 	Alignment (class in mgkit.utils.sequence)

 	ann_frame (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	annotate_graph_nodes() (in module mgkit.graphs)

 	annotate_sequence() (in module mgkit.io.gff)

 	Annotation (class in mgkit.io.gff)

 	annotation_coverage() (in module mgkit.io.gff)

 	annotation_coverage_sorted() (in module mgkit.io.gff)

 	annotation_elongation() (in module mgkit.io.gff)

 	api_url (mgkit.kegg.KeggClientRest attribute)

 	apply_func_to_values() (in module mgkit.utils.dictionary)

 	apply_func_window() (in module mgkit.utils.common)

 	attr (mgkit.io.gff.Annotation attribute)

 	AttributeNotFound

 	average_length() (in module mgkit.utils.common)

B

 	
 	baseheatmap() (in module mgkit.plots.heatmap)

 	batch_load_htseq_counts() (in module mgkit.counts.func)

 	between() (in module mgkit.utils.common)

 	bitscore (mgkit.io.gff.Annotation attribute)

 	
 blast2gff command line option

 	--cite

 	--version

 	
 blast2gff-blastdb command line option

 	--progress

 	-a, --fasta-file <fasta_file>

 	-b, --bitscore <bitscore>

 	-db, --db-used <db_used>

 	-dbq, --db-quality <db_quality>

 	-ft, --feat-type <feat_type>

 	-i, --gene-index <gene_index>

 	-k, --attr-value <attr_value>

 	-n, --no-split

 	-r, --remove-version

 	-s, --header-sep <header_sep>

 	-v, --verbose

 	BLAST_FILE

 	GFF_FILE

 	
 	
 blast2gff-uniprot command line option

 	--progress

 	-a, --fasta-file <fasta_file>

 	-b, --bitscore <bitscore>

 	-db, --db-used <db_used>

 	-dbq, --db-quality <db_quality>

 	-ft, --feat-type <feat_type>

 	-k, --attr-value <attr_value>

 	-n, --no-split

 	-v, --verbose

 	BLAST_FILE

 	GFF_FILE

 	
 BLAST_FILE

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	boxplot_dataframe() (in module mgkit.plots.boxplot)

 	boxplot_dataframe_multindex() (in module mgkit.plots.boxplot)

 	build_graph() (in module mgkit.graphs)

 	build_rank_matrix() (in module mgkit.snps.funcs)

 	build_weighted_graph() (in module mgkit.graphs)

C

 	
 	c_name (mgkit.taxon.UniprotTaxonTuple attribute)

 	cache (mgkit.kegg.KeggClientRest attribute)

 	cache_dict_file (class in mgkit.utils.dictionary)

 	calc_coefficient_of_variation() (in module mgkit.mappings.pandas_map)

 	calc_n50() (in module mgkit.utils.sequence)

 	calc_ratio() (mgkit.snps.classes.RatioMixIn method)

 	calc_ratio_flag() (mgkit.snps.classes.RatioMixIn method)

 	change_mapping_level() (in module mgkit.mappings.enzyme)

 	check_fastq_type() (in module mgkit.io.fastq)

 	check_snp_in_seq() (in module mgkit.utils.sequence)

 	check_snp_in_set() (in module mgkit.workflow.snp_parser)

 	check_version() (in module mgkit)

 	choose_annotation() (in module mgkit.filter.gff)

 	choose_header_type() (in module mgkit.io.fastq)

 	chr_name (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	chr_pos (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	cite() (in module mgkit)

 	cite_callback() (in module mgkit.workflow.utils)

 	CiteAction (class in mgkit.workflow.utils)

 	classes (mgkit.kegg.KeggModule attribute)

 	cmp_compounds() (mgkit.graphs.Reaction method)

 	codon (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	col_func_firstel() (in module mgkit.plots.abund)

 	col_func_name() (in module mgkit.plots.abund)

 	col_func_taxon() (in module mgkit.plots.abund)

 	ColorFormatter (class in mgkit.logger)

 	colors (mgkit.logger.ColorFormatter attribute)

 	combine_dict() (in module mgkit.utils.dictionary)

 	
 	combine_dict_one_value() (in module mgkit.utils.dictionary)

 	combine_sample_snps() (in module mgkit.snps.funcs)

 	compare_header() (in module mgkit.workflow.sampling_utils)

 	complement_ranges() (in module mgkit.utils.common)

 	compounds (mgkit.kegg.KeggModule attribute)

 	compressed_handle() (in module mgkit.io.utils)

 	concatenate_and_rename_tables() (in module mgkit.mappings.pandas_map)

 	config_log() (in module mgkit.logger)

 	config_log_to_file() (in module mgkit.logger)

 	conn (mgkit.db.mongo.GFFDB attribute)

 	contact (mgkit.kegg.KeggClientRest attribute)

 	conv() (mgkit.kegg.KeggClientRest method)

 	convert_aa_to_nuc_coord() (in module mgkit.utils.sequence)

 	convert_gff_to_gtf() (in module mgkit.io.gff)

 	convert_record() (mgkit.db.mongo.GFFDB method)

 	convert_seqid_to_new() (in module mgkit.io.fastq)

 	convert_seqid_to_old() (in module mgkit.io.fastq)

 	copy_edges() (in module mgkit.graphs)

 	copy_nodes() (in module mgkit.graphs)

 	count_genes_in_mapping() (in module mgkit.mappings.utils)

 	counts (mgkit.io.gff.Annotation attribute)

 	coverage (mgkit.io.gff.Annotation attribute)

 	(mgkit.snps.classes.GeneSNP attribute), [1]

 	covered_annotation_bp() (in module mgkit.align)

 	cpd_desc_re (mgkit.kegg.KeggClientRest attribute)

 	cpd_re (mgkit.kegg.KeggClientRest attribute)

 	create_gff_dbm() (in module mgkit.db.dbm)

 	cursor() (mgkit.db.mongo.GFFDB method)

D

 	
 	data (mgkit.align.SamtoolsDepth attribute)

 	datawarehouse_search() (in module mgkit.net.embl)

 	db (mgkit.db.dbm.GFFDB attribute)

 	(mgkit.db.mongo.GFFDB attribute)

 	(mgkit.io.gff.Annotation attribute)

 	dbfetch() (in module mgkit.net.embl)

 	dbq (mgkit.io.gff.Annotation attribute)

 	dendrogram() (in module mgkit.plots.heatmap)

 	DependencyError

 	
 	deprecated() (in module mgkit.utils.common)

 	diff_gff() (in module mgkit.io.gff)

 	distance_taxa_ancestor() (in module mgkit.taxon)

 	distance_two_taxa() (in module mgkit.taxon)

 	draw_1d_grid() (in module mgkit.plots.abund)

 	draw_axis_internal_triangle() (in module mgkit.plots.abund)

 	draw_circles() (in module mgkit.plots.abund)

 	draw_triangle_grid() (in module mgkit.plots.abund)

 	drop_taxon() (mgkit.taxon.Taxonomy method)

 	DuplicateKeyError

E

 	
 	elongate_annotations() (in module mgkit.io.gff)

 	empty_cache() (mgkit.kegg.KeggClientRest method)

 	end (mgkit.io.gff.GenomicRange attribute)

 	entry (mgkit.kegg.KeggModule attribute)

 	EntryNotFound

 	exit_script() (in module mgkit.workflow.utils)

 	exon (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	
 	exp_nonsyn (mgkit.io.gff.Annotation attribute)

 	(mgkit.snps.classes.GeneSNP attribute), [1]

 	exp_syn (mgkit.io.gff.Annotation attribute)

 	(mgkit.snps.classes.GeneSNP attribute), [1]

 	expand_from_list() (mgkit.io.gff.GenomicRange method)

 	expected_error_rate() (in module mgkit.filter.reads)

 	extract_nuc_seqs() (in module mgkit.io.gff)

 	extrapolate_model() (in module mgkit.utils.sequence)

F

 	
 	
 fasta-utils command line option

 	--cite

 	--version

 	
 fasta-utils-split command line option

 	-n, --number <number>

 	-p, --prefix <prefix>

 	-v, --verbose

 	-z, --gzip

 	FASTA_FILE

 	
 fasta-utils-translate command line option

 	--progress

 	-t, --trans-table <trans_table>

 	-v, --verbose

 	FASTA_FILE

 	OUTPUT_FILE

 	
 fasta-utils-uid command line option

 	-t, --table <table>

 	-v, --verbose

 	FASTA_FILE

 	OUTPUT_FILE

 	
 FASTA_FILE

 	fasta-utils-split command line option

 	fasta-utils-translate command line option

 	fasta-utils-uid command line option

 	fastq-utils-convert command line option

 	get-gff-info-sequence command line option

 	
 fastq-utils command line option

 	--cite

 	--version

 	
 fastq-utils-convert command line option

 	-v, --verbose

 	FASTA_FILE

 	FASTQ_FILE

 	
 fastq-utils-di command line option

 	-s, --strip

 	-v, --verbose

 	FASTQ_FILE

 	MATE1_FILE

 	MATE2_FILE

 	
 fastq-utils-il command line option

 	-v, --verbose

 	FASTQ_FILE

 	MATE1_FILE

 	MATE2_FILE

 	
 fastq-utils-sort command line option

 	-v, --verbose

 	MATE1_INPUT

 	MATE1_OUTPUT

 	MATE2_INPUT

 	MATE2_OUTPUT

 	
 FASTQ_FILE

 	fastq-utils-convert command line option

 	fastq-utils-di command line option

 	fastq-utils-il command line option

 	feat_dist (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	feat_end (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	feat_num (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	feat_start (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	feat_type (mgkit.io.gff.Annotation attribute)

 	feature (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	file_handle (mgkit.align.SamtoolsDepth attribute)

 	
 filter-gff command line option

 	--cite

 	--version

 	
 filter-gff-cov command line option

 	--progress

 	-c, --min-coverage <min_coverage>

 	-f, --reference <reference>

 	-r, --rename

 	-s, --strand-specific

 	-t, --sorted

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 filter-gff-overlap command line option

 	--progress

 	-a, --sort-attr <sort_attr>

 	-c, --choose-func <choose_func>

 	-s, --size <size>

 	-t, --sorted

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 	
 filter-gff-sequence command line option

 	--progress

 	-a, --attribute <attribute>

 	-c, --comparison <comparison>

 	-f, --function <function>

 	-l, --value <value>

 	-t, --sorted

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 filter-gff-values command line option

 	--num-eq <num_eq>

 	--num-ge <num_ge>

 	--num-gt <num_gt>

 	--num-le <num_le>

 	--num-lt <num_lt>

 	--progress

 	--str-eq <str_eq>

 	--str-in <str_in>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	filter_annotations() (in module mgkit.filter.gff)

 	filter_attr_num() (in module mgkit.filter.gff)

 	filter_attr_num_s() (in module mgkit.filter.gff)

 	filter_attr_str() (in module mgkit.filter.gff)

 	filter_base() (in module mgkit.filter.gff)

 	filter_base_num() (in module mgkit.filter.gff)

 	filter_by_ancestor() (in module mgkit.filter.taxon)

 	filter_counts() (in module mgkit.counts.func)

 	filter_eq() (in module mgkit.workflow.filter_gff)

 	filter_genesyn_by_coverage() (in module mgkit.snps.filter)

 	filter_genesyn_by_gene_id() (in module mgkit.snps.filter)

 	filter_genesyn_by_taxon_id() (in module mgkit.snps.filter)

 	filter_graph() (in module mgkit.graphs)

 	filter_gt() (in module mgkit.workflow.filter_gff)

 	filter_in() (in module mgkit.workflow.filter_gff)

 	filter_len() (in module mgkit.filter.gff)

 	filter_lt() (in module mgkit.workflow.filter_gff)

 	filter_nan() (in module mgkit.utils.dictionary)

 	filter_ratios_by_numbers() (in module mgkit.utils.dictionary)

 	filter_taxon_by_id_list() (in module mgkit.filter.taxon)

 	FilterFails

 	find() (mgkit.kegg.KeggClientRest method)

 	find_annotation() (mgkit.db.mongo.GFFDB method)

 	find_by_name() (mgkit.taxon.Taxonomy method)

 	find_comparison() (in module mgkit.workflow.filter_gff)

 	find_id_in_dict() (in module mgkit.utils.dictionary)

 	find_submodules() (mgkit.kegg.KeggModule method)

 	first_cp (mgkit.kegg.KeggModule attribute)

 	fit_lowess_interpolate() (in module mgkit.counts.glm)

 	flat_sample_snps() (in module mgkit.snps.funcs)

 	float_to_hex_color() (in module mgkit.plots.colors)

 	format() (mgkit.logger.ColorFormatter method)

 	fpkms (mgkit.io.gff.Annotation attribute)

 	frame (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	from_aa_blast_frag() (in module mgkit.io.gff)

 	from_gff() (in module mgkit.counts.func)

 	(in module mgkit.io.gff)

 	from_glimmer3() (in module mgkit.io.gff)

 	from_hmmer() (in module mgkit.io.gff)

 	from_json() (in module mgkit.io.gff)

 	(mgkit.snps.classes.GeneSNP method)

 	from_kgml() (in module mgkit.graphs)

 	from_mongodb() (in module mgkit.io.gff)

 	from_nuc_blast() (in module mgkit.io.gff)

 	from_nuc_blast_frag() (in module mgkit.io.gff)

 	from_prodigal_frag() (in module mgkit.io.gff)

 	from_sequence() (in module mgkit.io.gff)

G

 	
 	gen_name_map() (mgkit.taxon.Taxonomy method)

 	gene_id (mgkit.io.gff.Annotation attribute)

 	(mgkit.io.snpdat.SNPDatRow attribute), [1]

 	(mgkit.snps.classes.GeneSNP attribute), [1]

 	gene_name (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	GeneSNP (class in mgkit.snps.classes)

 	GenomicRange (class in mgkit.io.gff)

 	
 get-gff-info command line option

 	--cite

 	--version

 	
 get-gff-info-cov command line option

 	--progress

 	-f, --reference <reference>

 	-j, --json-out

 	-r, --rename

 	-s, --strand-specific

 	-v, --verbose

 	GFF_FILE

 	OUTPUT_FILE

 	
 get-gff-info-dbm command line option

 	-d, --output-dir <output_dir>

 	-v, --verbose

 	GFF_FILE

 	
 get-gff-info-gtf command line option

 	-g, --gene-id <gene_id>

 	-v, --verbose

 	GFF_FILE

 	GTF_FILE

 	
 get-gff-info-mongodb command line option

 	--progress

 	-c, --no-cache

 	-i, --indent <indent>

 	-t, --taxonomy <taxonomy>

 	-v, --verbose

 	GFF_FILE

 	OUTPUT_FILE

 	
 get-gff-info-sequence command line option

 	--progress

 	-f, --reference <reference>

 	-r, --reverse

 	-s, --split

 	-v, --verbose

 	-w, --no-wrap

 	FASTA_FILE

 	GFF_FILE

 	
 get-gff-info-split command line option

 	-n, --number <number>

 	-p, --prefix <prefix>

 	-v, --verbose

 	-z, --gzip

 	GFF_FILE

 	get_aa_data() (in module mgkit.workflow.hmmer2gff)

 	get_aa_seq() (mgkit.io.gff.Annotation method)

 	get_ancestor_map() (in module mgkit.taxon)

 	get_annotation_map() (in module mgkit.io.gff)

 	get_attr() (mgkit.io.gff.Annotation method)

 	get_consensus() (mgkit.utils.sequence.Alignment method)

 	get_contigs_info() (in module mgkit.utils.sequence)

 	get_default_filters() (in module mgkit.snps.filter)

 	get_ec() (mgkit.io.gff.Annotation method)

 	get_entry() (mgkit.kegg.KeggClientRest method)

 	get_enzyme_full_name() (in module mgkit.mappings.enzyme)

 	get_enzyme_level() (in module mgkit.mappings.enzyme)

 	get_full_dataframe() (in module mgkit.snps.conv_func)

 	get_gene_funccat() (mgkit.mappings.eggnog.NOGInfo method)

 	get_gene_info() (in module mgkit.net.uniprot)

 	get_gene_info_iter() (in module mgkit.net.uniprot)

 	
 	get_gene_map_dataframe() (in module mgkit.snps.conv_func)

 	get_gene_nog() (mgkit.mappings.eggnog.NOGInfo method)

 	get_gene_taxon_dataframe() (in module mgkit.snps.conv_func)

 	get_general_eggnog_cat() (in module mgkit.mappings.eggnog)

 	get_grid_figure() (in module mgkit.plots.utils)

 	get_ids_names() (mgkit.kegg.KeggClientRest method)

 	get_ko_to_eggnog_mappings() (in module mgkit.net.uniprot)

 	get_lineage() (in module mgkit.taxon)

 	(mgkit.taxon.Taxonomy method)

 	get_lineage_string() (mgkit.taxon.Taxonomy method)

 	get_mapping() (mgkit.io.gff.Annotation method)

 	get_mapping_level() (in module mgkit.mappings.enzyme)

 	get_mappings() (in module mgkit.net.uniprot)

 	(mgkit.io.gff.Annotation method)

 	get_name_map() (mgkit.taxon.Taxonomy method)

 	get_nog_funccat() (mgkit.mappings.eggnog.NOGInfo method)

 	get_nog_gencat() (mgkit.mappings.eggnog.NOGInfo method)

 	get_nogs_funccat() (mgkit.mappings.eggnog.NOGInfo method)

 	get_nuc_seq() (mgkit.io.gff.Annotation method)

 	get_number_of_samples() (mgkit.io.gff.Annotation method)

 	get_ortholog_pathways() (mgkit.kegg.KeggClientRest method)

 	get_pathway_links() (mgkit.kegg.KeggClientRest method)

 	get_pfam_families() (in module mgkit.net.pfam)

 	get_position() (mgkit.utils.sequence.Alignment method)

 	get_range() (mgkit.io.gff.GenomicRange method)

 	get_rank_dataframe() (in module mgkit.snps.conv_func)

 	get_ranked_id() (mgkit.taxon.Taxonomy method)

 	get_ranked_taxon() (mgkit.taxon.Taxonomy method)

 	get_reaction_equations() (mgkit.kegg.KeggClientRest method)

 	get_region_coverage() (in module mgkit.align)

 	get_relative_pos() (mgkit.io.gff.GenomicRange method)

 	get_seq_expected_syn_count() (in module mgkit.utils.sequence)

 	get_seq_len() (mgkit.utils.sequence.Alignment method)

 	get_seq_number_of_syn() (in module mgkit.utils.sequence)

 	get_sequences_by_ids() (in module mgkit.net.embl)

 	get_sequences_by_ko() (in module mgkit.net.uniprot)

 	get_single_figure() (in module mgkit.plots.utils)

 	get_snps() (mgkit.utils.sequence.Alignment method)

 	get_syn_matrix() (in module mgkit.utils.sequence)

 	get_syn_matrix_all() (in module mgkit.utils.sequence)

 	get_taxon_info() (in module mgkit.workflow.taxon_utils)

 	get_uid_info() (in module mgkit.counts.func)

 	get_uid_info_ann() (in module mgkit.counts.func)

 	get_uniprot_ec_mappings() (in module mgkit.net.uniprot)

 	get_variant_sequence() (in module mgkit.utils.sequence)

 	
 GFF_FILE

 	blast2gff-blastdb command line option

 	blast2gff-uniprot command line option

 	get-gff-info-cov command line option

 	get-gff-info-dbm command line option

 	get-gff-info-gtf command line option

 	get-gff-info-mongodb command line option

 	get-gff-info-sequence command line option

 	get-gff-info-split command line option

 	json2gff-mongodb command line option

 	taxon-utils-lca command line option

 	GFFDB (class in mgkit.db.dbm)

 	(class in mgkit.db.mongo)

 	group_annotation_by_mapping() (in module mgkit.mappings.utils)

 	group_annotations() (in module mgkit.io.gff)

 	group_annotations_by_ancestor() (in module mgkit.io.gff)

 	group_annotations_sorted() (in module mgkit.io.gff)

 	group_dataframe_by_mapping() (in module mgkit.mappings.pandas_map)

 	group_rank_matrix() (in module mgkit.snps.funcs)

 	group_tuples_by_key() (in module mgkit.io.utils)

 	grouped_spine() (in module mgkit.plots.heatmap)

 	
 GTF_FILE

 	get-gff-info-gtf command line option

H

 	
 	HDFDict (class in mgkit.utils.dictionary)

 	
 	heatmap_clustered() (in module mgkit.plots.heatmap)

I

 	
 	id_prefix (mgkit.kegg.KeggClientRest attribute)

 	in_feat (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	infer_parameters() (in module mgkit.workflow.sampling_utils)

 	init_count_set() (in module mgkit.workflow.snp_parser)

 	
 INPUT_FILE

 	add-gff-info-addtaxa command line option

 	add-gff-info-counts command line option

 	add-gff-info-cov_samtools command line option

 	add-gff-info-coverage command line option

 	add-gff-info-exp_syn command line option

 	add-gff-info-kegg command line option

 	add-gff-info-pfam command line option

 	add-gff-info-unipfile command line option

 	add-gff-info-uniprot command line option

 	filter-gff-cov command line option

 	filter-gff-overlap command line option

 	filter-gff-sequence command line option

 	filter-gff-values command line option

 	json2gff-mongodb command line option

 	sampling-utils-sample command line option

 	sampling-utils-sample_stream command line option

 	sampling-utils-sync command line option

 	taxon-utils-filter command line option

 	taxon-utils-lca_line command line option

 	taxon-utils-to_hdf command line option

 	
 	insert_many() (mgkit.db.mongo.GFFDB method)

 	insert_one() (mgkit.db.mongo.GFFDB method)

 	intersect() (mgkit.io.gff.GenomicRange method)

 	irreversible_paths (mgkit.graphs.Reaction attribute)

 	is_ancestor() (in module mgkit.taxon)

 	(mgkit.taxon.Taxonomy method)

 	is_ranked_below() (mgkit.taxon.Taxonomy method)

 	is_syn() (mgkit.io.gff.Annotation method)

 	items() (mgkit.db.dbm.GFFDB method)

 	(mgkit.db.mongo.GFFDB method)

 	iteritems() (mgkit.db.dbm.GFFDB method)

 	(mgkit.db.mongo.GFFDB method)

 	itervalues() (mgkit.db.dbm.GFFDB method)

 	(mgkit.db.mongo.GFFDB method)

J

 	
 	
 json2gff command line option

 	--cite

 	--version

 	
 	
 json2gff-mongodb command line option

 	-v, --verbose

 	GFF_FILE

 	INPUT_FILE

K

 	
 	kegg_id (mgkit.graphs.Reaction attribute)

 	KeggClientRest (class in mgkit.kegg)

 	KeggModule (class in mgkit.kegg)

 	
 	keys() (mgkit.db.mongo.GFFDB method)

 	ko_desc_re (mgkit.kegg.KeggClientRest attribute)

 	ko_to_mapping() (in module mgkit.net.uniprot)

L

 	
 	last_common_ancestor() (in module mgkit.taxon)

 	last_common_ancestor_multiple() (in module mgkit.taxon)

 	last_cp (mgkit.kegg.KeggModule attribute)

 	legend_patches() (in module mgkit.plots.utils)

 	length (mgkit.io.gff.Annotation attribute)

 	lineage (mgkit.taxon.UniprotTaxonTuple attribute)

 	link() (mgkit.kegg.KeggClientRest method)

 	link_graph() (in module mgkit.graphs)

 	link_ids() (in module mgkit.utils.dictionary)

 	(mgkit.kegg.KeggClientRest method)

 	link_nodes() (in module mgkit.graphs)

 	list_ids() (mgkit.kegg.KeggClientRest method)

 	load_cache() (mgkit.kegg.KeggClientRest method)

 	load_counts_from_gff() (in module mgkit.counts.func)

 	load_data() (mgkit.taxon.Taxonomy method)

 	load_description() (mgkit.mappings.eggnog.NOGInfo method)

 	load_deseq2_results() (in module mgkit.counts.func)

 	load_fasta() (in module mgkit.io.fasta)

 	
 	load_fasta_file() (in module mgkit.workflow.blast2gff)

 	load_fasta_files() (in module mgkit.io.fasta)

 	load_fasta_prodigal() (in module mgkit.io.fasta)

 	load_fasta_rename() (in module mgkit.io.fasta)

 	load_fastq() (in module mgkit.io.fastq)

 	load_fastq_rename() (in module mgkit.io.fastq)

 	load_featurecounts_files() (in module mgkit.workflow.add_gff_info)

 	load_funccat() (mgkit.mappings.eggnog.NOGInfo method)

 	load_gff_base_info() (in module mgkit.io.gff)

 	load_gff_mappings() (in module mgkit.io.gff)

 	load_htseq_count_files() (in module mgkit.workflow.add_gff_info)

 	load_htseq_counts() (in module mgkit.counts.func)

 	load_members() (mgkit.mappings.eggnog.NOGInfo method)

 	load_sample_counts() (in module mgkit.counts.func)

 	load_sample_counts_to_genes() (in module mgkit.counts.func)

 	load_sample_counts_to_taxon() (in module mgkit.counts.func)

 	load_trans_table() (in module mgkit.workflow.fasta_utils)

 	lowess_ci_bootstrap() (in module mgkit.counts.glm)

 	lowest_common_ancestor() (in module mgkit.taxon)

M

 	
 	main() (in module mgkit.workflow.hmmer2gff)

 	(in module mgkit.workflow.snp_parser)

 	make_choose_func() (in module mgkit.workflow.filter_gff)

 	make_reverse_table() (in module mgkit.utils.sequence)

 	make_stat_table() (in module mgkit.mappings.pandas_map)

 	map_counts() (in module mgkit.counts.func)

 	map_counts_to_category() (in module mgkit.counts.func)

 	map_gene_id() (in module mgkit.snps.mapper)

 	map_gene_id_to_map() (in module mgkit.counts.func)

 	map_taxon_by_id_list() (in module mgkit.mappings.taxon)

 	map_taxon_id_to_ancestor() (in module mgkit.snps.mapper)

 	map_taxon_id_to_rank() (in module mgkit.counts.func)

 	(in module mgkit.snps.mapper)

 	
 MATE1_FILE

 	fastq-utils-di command line option

 	fastq-utils-il command line option

 	
 MATE1_INPUT

 	fastq-utils-sort command line option

 	
 MATE1_OUTPUT

 	fastq-utils-sort command line option

 	
 MATE2_FILE

 	fastq-utils-di command line option

 	fastq-utils-il command line option

 	
 MATE2_INPUT

 	fastq-utils-sort command line option

 	
 MATE2_OUTPUT

 	fastq-utils-sort command line option

 	max_size (mgkit.align.SamtoolsDepth attribute)

 	max_size_dict (mgkit.align.SamtoolsDepth attribute)

 	memoize (class in mgkit.simple_cache)

 	merge_dictionaries() (in module mgkit.utils.dictionary)

 	merge_kgmls() (in module mgkit.graphs)

 	messages (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	mgkit (module)

 	mgkit.align (module)

 	mgkit.consts (module)

 	mgkit.counts (module)

 	mgkit.counts.func (module)

 	mgkit.counts.glm (module)

 	mgkit.counts.scaling (module)

 	mgkit.db (module)

 	mgkit.db.dbm (module)

 	mgkit.db.mongo (module)

 	mgkit.filter (module)

 	mgkit.filter.common (module)

 	mgkit.filter.gff (module)

 	mgkit.filter.lists (module)

 	mgkit.filter.reads (module)

 	mgkit.filter.taxon (module)

 	mgkit.graphs (module)

 	mgkit.io (module)

 	mgkit.io.blast (module)

 	mgkit.io.fasta (module)

 	
 	mgkit.io.fastq (module)

 	mgkit.io.gff (module)

 	mgkit.io.glimmer (module)

 	mgkit.io.snpdat (module)

 	mgkit.io.uniprot (module)

 	mgkit.io.utils (module)

 	mgkit.kegg (module)

 	mgkit.logger (module)

 	mgkit.mappings (module)

 	mgkit.mappings.cazy (module)

 	mgkit.mappings.eggnog (module)

 	mgkit.mappings.enzyme (module)

 	mgkit.mappings.go (module)

 	mgkit.mappings.pandas_map (module)

 	mgkit.mappings.taxon (module)

 	mgkit.mappings.utils (module)

 	mgkit.net (module)

 	mgkit.net.embl (module)

 	mgkit.net.pfam (module)

 	mgkit.net.uniprot (module)

 	mgkit.net.utils (module)

 	mgkit.plots (module)

 	mgkit.plots.abund (module)

 	mgkit.plots.boxplot (module)

 	mgkit.plots.colors (module)

 	mgkit.plots.heatmap (module)

 	mgkit.plots.utils (module)

 	mgkit.simple_cache (module)

 	mgkit.snps (module)

 	mgkit.snps.classes (module)

 	mgkit.snps.conv_func (module)

 	mgkit.snps.filter (module)

 	mgkit.snps.funcs (module)

 	mgkit.snps.mapper (module)

 	mgkit.taxon (module)

 	mgkit.utils (module)

 	mgkit.utils.common (module)

 	mgkit.utils.dictionary (module)

 	mgkit.utils.sequence (module)

 	mgkit.utils.trans_tables (module)

 	mgkit.workflow (module)

 	mgkit.workflow.add_gff_info (module), [1]

 	mgkit.workflow.blast2gff (module), [1]

 	mgkit.workflow.extract_gff_info (module), [1]

 	mgkit.workflow.fasta_utils (module), [1]

 	mgkit.workflow.fastq_utils (module), [1]

 	mgkit.workflow.filter_gff (module), [1]

 	mgkit.workflow.hmmer2gff (module), [1]

 	mgkit.workflow.json2gff (module), [1]

 	mgkit.workflow.sampling_utils (module), [1]

 	mgkit.workflow.snp_parser (module), [1]

 	mgkit.workflow.taxon_utils (module), [1]

 	mgkit.workflow.utils (module)

N

 	
 	name (mgkit.kegg.KeggModule attribute)

 	next() (mgkit.utils.dictionary.cache_dict_file method)

 	NoEntryFound

 	NOGInfo (class in mgkit.mappings.eggnog)

 	NoLcaFound

 	
 	nonsyn (mgkit.snps.classes.GeneSNP attribute)

 	(mgkit.snps.classes.SNPType attribute)

 	nuc_change (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	nuc_ref (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	num_features (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	num_stops (mgkit.io.snpdat.SNPDatRow attribute), [1]

O

 	
 	open_file() (in module mgkit.io.utils)

 	optimise_alpha_scipy() (in module mgkit.counts.glm)

 	optimise_alpha_scipy_function() (in module mgkit.counts.glm)

 	order_ratios() (in module mgkit.snps.funcs)

 	orthologs (mgkit.graphs.Reaction attribute)

 	
 OUTPUT_FILE

 	add-gff-info-addtaxa command line option

 	add-gff-info-counts command line option

 	add-gff-info-cov_samtools command line option

 	add-gff-info-coverage command line option

 	add-gff-info-exp_syn command line option

 	add-gff-info-kegg command line option

 	add-gff-info-pfam command line option

 	add-gff-info-unipfile command line option

 	add-gff-info-uniprot command line option

 	fasta-utils-translate command line option

 	fasta-utils-uid command line option

 	filter-gff-cov command line option

 	filter-gff-overlap command line option

 	filter-gff-sequence command line option

 	filter-gff-values command line option

 	get-gff-info-cov command line option

 	get-gff-info-mongodb command line option

 	sampling-utils-rand_seq command line option

 	sampling-utils-sample_stream command line option

 	sampling-utils-sync command line option

 	taxon-utils-filter command line option

 	taxon-utils-lca command line option

 	taxon-utils-lca_line command line option

 	taxon-utils-to_hdf command line option

P

 	
 	palette_float_to_hex() (in module mgkit.plots.colors)

 	parent_id (mgkit.taxon.UniprotTaxonTuple attribute)

 	parse_accession_taxa_table() (in module mgkit.io.blast)

 	parse_blast_tab() (in module mgkit.io.blast)

 	parse_domain_table_contigs() (in module mgkit.workflow.hmmer2gff)

 	parse_entry() (mgkit.kegg.KeggModule method)

 	parse_entry2() (mgkit.kegg.KeggModule method)

 	parse_expasy_file() (in module mgkit.mappings.enzyme)

 	parse_fragment_blast() (in module mgkit.io.blast)

 	parse_gff() (in module mgkit.io.gff)

 	parse_gff_files() (in module mgkit.io.gff)

 	parse_glimmer3() (in module mgkit.io.glimmer)

 	parse_gtdb_lineage() (mgkit.taxon.Taxonomy static method)

 	parse_hdf5_arg() (in module mgkit.workflow.add_gff_info)

 	parse_kgml_reactions() (in module mgkit.graphs)

 	parse_ncbi_taxonomy_merged_file() (in module mgkit.taxon)

 	parse_ncbi_taxonomy_names_file() (in module mgkit.taxon)

 	
 	parse_ncbi_taxonomy_nodes_file() (in module mgkit.taxon)

 	parse_reaction() (in module mgkit.kegg)

 	(mgkit.kegg.KeggModule static method)

 	parse_uniprot_blast() (in module mgkit.io.blast)

 	parse_uniprot_mappings() (in module mgkit.io.uniprot)

 	parse_uniprot_response() (in module mgkit.net.uniprot)

 	parse_uniprot_taxon() (in module mgkit.taxon)

 	parse_vcf() (in module mgkit.workflow.snp_parser)

 	pathways (mgkit.graphs.Reaction attribute)

 	perseq_calc_threshold() (in module mgkit.workflow.filter_gff)

 	phase (mgkit.io.gff.Annotation attribute)

 	pipe_filters() (in module mgkit.snps.filter)

 	PrintManAction (class in mgkit.workflow.utils)

 	products (mgkit.graphs.Reaction attribute)

 	project_point() (in module mgkit.plots.abund)

 	protein_id (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	put_gaps_in_nuc_seq() (in module mgkit.utils.sequence)

Q

 	
 	qualities_model_constant() (in module mgkit.utils.sequence)

 	
 	qualities_model_decrease() (in module mgkit.utils.sequence)

 	query_uniprot() (in module mgkit.net.uniprot)

R

 	
 	random_qualities() (in module mgkit.utils.sequence)

 	random_sequences() (in module mgkit.utils.sequence)

 	random_sequences_codon() (in module mgkit.utils.sequence)

 	range_intersect() (in module mgkit.utils.common)

 	range_substract() (in module mgkit.utils.common)

 	ranges_length() (in module mgkit.utils.common)

 	rank (mgkit.taxon.UniprotTaxonTuple attribute)

 	RatioMixIn (class in mgkit.snps.classes)

 	Reaction (class in mgkit.graphs)

 	reactions (mgkit.kegg.KeggModule attribute)

 	read_from_gtdb_taxonomy() (mgkit.taxon.Taxonomy method)

 	read_from_ncbi_dump() (mgkit.taxon.Taxonomy method)

 	read_samtools_depth() (in module mgkit.align)

 	
 	read_taxonomy() (mgkit.taxon.Taxonomy method)

 	region (mgkit.io.gff.Annotation attribute)

 	(mgkit.io.snpdat.SNPDatRow attribute), [1]

 	region_coverage() (mgkit.align.SamtoolsDepth method)

 	rename_graph_nodes() (in module mgkit.graphs)

 	report_counts() (in module mgkit.workflow.fastq_utils)

 	reverse_aa_coord() (in module mgkit.utils.sequence)

 	reverse_complement() (in module mgkit.utils.sequence)

 	reverse_complement_old() (in module mgkit.utils.sequence)

 	reverse_mapping() (in module mgkit.utils.dictionary)

 	reversible (mgkit.graphs.Reaction attribute)

 	reversible_paths (mgkit.graphs.Reaction attribute)

 	rn_eq_re (mgkit.kegg.KeggClientRest attribute)

 	rn_name_re (mgkit.kegg.KeggClientRest attribute)

S

 	
 	s_name (mgkit.taxon.UniprotTaxonTuple attribute)

 	sample_coverage (mgkit.io.gff.Annotation attribute)

 	
 sampling-utils command line option

 	--cite

 	--version

 	
 sampling-utils-rand_seq command line option

 	--progress

 	-a, --read-model <read_model>

 	-d, --const-model

 	-gc, --gc-content <gc_content>

 	-i, --infer-params <infer_params>

 	-l, --length <length>

 	-m, --save-model <save_model>

 	-n, --num-seqs <num_seqs>

 	-q, --fastq

 	-r, --coding-prop <coding_prop>

 	-v, --verbose

 	-x, --dist-loc <dist_loc>

 	OUTPUT_FILE

 	
 sampling-utils-sample command line option

 	-n, --number <number>

 	-p, --prefix <prefix>

 	-q, --fastq

 	-r, --prob <prob>

 	-v, --verbose

 	-x, --max-seq <max_seq>

 	-z, --gzip

 	INPUT_FILE

 	
 sampling-utils-sample_stream command line option

 	-q, --fastq

 	-r, --prob <prob>

 	-v, --verbose

 	-x, --max-seq <max_seq>

 	INPUT_FILE

 	OUTPUT_FILE

 	
 sampling-utils-sync command line option

 	-m, --master-file <master_file>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 	SamtoolsDepth (class in mgkit.align)

 	save_data() (in module mgkit.workflow.snp_parser)

 	(mgkit.taxon.Taxonomy method)

 	scale_deseq() (in module mgkit.counts.scaling)

 	scale_factor_deseq() (in module mgkit.counts.scaling)

 	scale_rpkm() (in module mgkit.counts.scaling)

 	score (mgkit.io.gff.Annotation attribute)

 	seq_id (mgkit.io.gff.GenomicRange attribute)

 	sequence_composition() (in module mgkit.utils.sequence)

 	sequence_gc_content() (in module mgkit.utils.sequence)

 	sequence_gc_ratio() (in module mgkit.utils.sequence)

 	set_attr() (mgkit.io.gff.Annotation method)

 	set_mapping() (mgkit.io.gff.Annotation method)

 	set_parser() (in module mgkit.workflow.hmmer2gff)

 	(in module mgkit.workflow.snp_parser)

 	setup_filters() (in module mgkit.workflow.filter_gff)

 	significance_test() (in module mgkit.snps.funcs)

 	snpdat_reader() (in module mgkit.io.snpdat)

 	SNPDatRow (class in mgkit.io.snpdat)

 	snps (mgkit.snps.classes.GeneSNP attribute), [1]

 	SNPType (class in mgkit.snps.classes)

 	source (mgkit.io.gff.Annotation attribute)

 	split_dictionary_by_value() (in module mgkit.utils.dictionary)

 	split_fasta_file() (in module mgkit.io.fasta)

 	split_gff_file() (in module mgkit.io.gff)

 	split_sample_alg() (in module mgkit.workflow.add_gff_info)

 	split_write() (in module mgkit.io.utils)

 	start (mgkit.io.gff.GenomicRange attribute)

 	strand (mgkit.io.gff.GenomicRange attribute)

 	(mgkit.io.snpdat.SNPDatRow attribute), [1]

 	substrates (mgkit.graphs.Reaction attribute)

 	syn (mgkit.snps.classes.GeneSNP attribute)

 	(mgkit.snps.classes.SNPType attribute)

 	synonymous (mgkit.io.snpdat.SNPDatRow attribute), [1]

T

 	
 	taxa_distance_matrix() (in module mgkit.taxon)

 	
 taxon-utils command line option

 	--cite

 	--version

 	
 taxon-utils-filter command line option

 	--progress

 	-e, --exclude-taxon-id <exclude_taxon_id>

 	-en, --exclude-taxon-name <exclude_taxon_name>

 	-i, --include-taxon-id <include_taxon_id>

 	-in, --include-taxon-name <include_taxon_name>

 	-p, --table

 	-t, --taxonomy <taxonomy>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 taxon-utils-lca command line option

 	--progress

 	-a, --only-ranked

 	-b, --bitscore <bitscore>

 	-f, --out-format <out_format>

 	-ft, --feat-type <feat_type>

 	-kt, --krona-total <krona_total>

 	-m, --rename

 	-n, --no-lca <no_lca>

 	-p, --simple-table

 	-r, --reference <reference>

 	-s, --sorted

 	-t, --taxonomy <taxonomy>

 	-v, --verbose

 	GFF_FILE

 	OUTPUT_FILE

 	
 taxon-utils-lca_line command line option

 	-a, --only-ranked

 	-n, --no-lca <no_lca>

 	-s, --separator <separator>

 	-t, --taxonomy <taxonomy>

 	-v, --verbose

 	INPUT_FILE

 	OUTPUT_FILE

 	
 	
 taxon-utils-to_hdf command line option

 	--progress

 	-c, --chunk-size <chunk_size>

 	-n, --table-name <table_name>

 	-s, --index-size <index_size>

 	-v, --verbose

 	-w, --overwrite

 	INPUT_FILE

 	OUTPUT_FILE

 	taxon_db (mgkit.io.gff.Annotation attribute)

 	taxon_id (mgkit.io.gff.Annotation attribute)

 	(mgkit.snps.classes.GeneSNP attribute), [1]

 	(mgkit.taxon.UniprotTaxonTuple attribute)

 	Taxonomy (class in mgkit.taxon)

 	TaxonTuple (in module mgkit.taxon)

 	to_dict() (mgkit.io.gff.Annotation method)

 	to_edges() (mgkit.graphs.Reaction method)

 	(mgkit.kegg.KeggModule method)

 	to_edges_compounds() (mgkit.graphs.Reaction method)

 	to_file() (mgkit.io.gff.Annotation method)

 	to_gff() (mgkit.io.gff.Annotation method)

 	to_gtf() (mgkit.io.gff.Annotation method)

 	to_json() (mgkit.io.gff.Annotation method)

 	(mgkit.snps.classes.GeneSNP method)

 	to_mongodb() (mgkit.io.gff.Annotation method)

 	to_nodes() (mgkit.graphs.Reaction method)

 	transcript_id (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	transcript_name (mgkit.io.snpdat.SNPDatRow attribute), [1]

 	translate_seq() (in module mgkit.workflow.fasta_utils)

 	translate_sequence() (in module mgkit.utils.sequence)

 	trim_by_ee() (in module mgkit.filter.reads)

U

 	
 	uid (mgkit.io.gff.Annotation attribute)

 	(mgkit.snps.classes.GeneSNP attribute), [1]

 	union() (mgkit.io.gff.GenomicRange method)

 	union_range() (in module mgkit.utils.common)

 	union_ranges() (in module mgkit.utils.common)

 	uniprot_mappings_to_dict() (in module mgkit.io.uniprot)

 	
 	UniprotTaxonomy (in module mgkit.taxon)

 	UniprotTaxonTuple (class in mgkit.taxon)

 	unknown (mgkit.snps.classes.SNPType attribute)

 	UnsupportedFormat

 	update() (mgkit.graphs.Reaction method)

 	url_open() (in module mgkit.net.utils)

 	url_read() (in module mgkit.net.utils)

V

 	
 	validate_params() (in module mgkit.workflow.blast2gff)

 	(in module mgkit.workflow.filter_gff)

 	validate_taxon_ids() (in module mgkit.workflow.taxon_utils)

 	
 	validate_taxon_names() (in module mgkit.workflow.taxon_utils)

 	values() (mgkit.db.dbm.GFFDB method)

 	(mgkit.db.mongo.GFFDB method)

 	variance_to_alpha() (in module mgkit.counts.glm)

W

 	
 	write_cache() (mgkit.kegg.KeggClientRest method)

 	write_fasta_sequence() (in module mgkit.io.fasta)

 	write_fastq_sequence() (in module mgkit.io.fastq)

 	write_gff() (in module mgkit.io.gff)

 	write_json() (in module mgkit.workflow.taxon_utils)

 	
 	write_krona() (in module mgkit.workflow.taxon_utils)

 	write_lca_gff() (in module mgkit.workflow.taxon_utils)

 	write_lca_tab() (in module mgkit.workflow.taxon_utils)

 	write_lca_tab_simple() (in module mgkit.workflow.taxon_utils)

 	write_no_lca() (in module mgkit.workflow.taxon_utils)

 	write_sign_genes_table() (in module mgkit.snps.funcs)

_images/examples_plots_abund_14_1.png
0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_15_1.png
0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_12_1.png
0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_13_1.png
0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_20_0.png
S1

09 08 07 06 05 04 03 0.2 0.1

01 02 03 04 05 06 07 0.8 0.9

S2

_images/examples_plots_abund_21_1.png
09 08 07 06 05 04 03 0.2 0.1

01 02 03 04 05 06 07 0.8 0.9

S2

_images/examples_plots_abund_16_1.png
0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_17_1.png
S1

0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_6_0.png
0.9 0.8 0.7

0.6 0.5

0.4 03 0.2

_images/examples_plots_abund_7_0.png
\
. AS \
S \
/ \ \
. N, \
\ \
0.1 {_._._. e Y 0.9
. o N N .
\ N \
. \ \\ \\
/ AN AN AN
. \
L kK : K

S1 09 08 07 06 05 04 03 02 01 S2

_images/examples_plots_abund_8_0.png
S3

0.9 0.1

0.8 0.2

0.7 0.3

0.9

0.1

S1 09 08 07 06 05 04 03 02 01 S2

nav.xhtml

 Table of Contents

 		
 Welcome to Metagenomic framework’s documentation!

 		
 Introduction

 		
 Citing

 		
 Links

 		
 Installation

 		
 Docker Instance (with Jupyter Notebook)

 		
 Requirements

 		
 Using pip

 		
 Using venv

 		
 Using the repository

 		
 Running Tests

 		
 Building Documentation

 		
 Troubleshooting

 		
 MacOSX

 		
 Installing Scipy from source on Linux

 		
 Notes

 		
 Metagenomic Pipeline

 		
 Tutorial

 		
 Initial setup

 		
 Getting Sequence Data

 		
 Metagenome Assembly

 		
 Gene Prediction

 		
 Create the GFF

 		
 Alignment

 		
 Coverage and SNP Info

 		
 SNP Calling

 		
 Data Preparation

 		
 Full Bash Script

 		
 Tutorial - Exploring the Data

 		
 Imports

 		
 Download Complete Data

 		
 Read Necessary Data

 		
 Explore Count Data

 		
 Explore Diversity

 		
 Profile a Community with BLAST

 		
 Considerations

 		
 Requirements

 		
 Download Data

 		
 Community Profiling

 		
 Gene Prediction

 		
 Prediction Software

 		
 General Procedure

 		
 Functional Prediction

 		
 Filter Annotations

 		
 Taxonomic Prediction

 		
 Complete Annotations

 		
 Examples

 		
 Scripts Details

 		
 blast2gff - Convert BLAST output to GFF

 		
 Overview

 		
 Options

 		
 filter-gff - Filter GFF annotations

 		
 Overview

 		
 Options

 		
 add-gff-info - Add informations to GFF annotations

 		
 Overview

 		
 Options

 		
 get-gff-info - Extract informations to GFF annotations

 		
 Overview

 		
 Options

 		
 hmmer2gff - Convert HMMER output to GFF

 		
 Overview

 		
 Options

 		
 snp_parser - SNPs analysis

 		
 Overview

 		
 Script Reference

 		
 Options

 		
 Download Taxonomy

 		
 Download Accession/TaxonID

 		
 taxon-utils - Taxonomy Utilities

 		
 Overview

 		
 Options

 		
 fasta-utils - Fasta Utilities

 		
 Overview

 		
 Options

 		
 fastq-utils - Fastq Utilities

 		
 Overview

 		
 Options

 		
 json2gff - Convert JSON to GFF

 		
 Overview

 		
 Options

 		
 sampling-utils - Resampling Utilities

 		
 Overview

 		
 Options

 		
 Example Notebooks

 		
 Abundance Plots

 		
 Triangle Plot

 		
 Abundance Plot with 2 Samples

 		
 Boxplots

 		
 Simple boxplot

 		
 Change order of boxplots

 		
 Change labels

 		
 Change font parameters

 		
 Empty boxplots

 		
 Vertical boxplot

 		
 Change boxplot colors

 		
 Change data colors and the median color

 		
 Adding data points

 		
 Adding Significance annotations

 		
 Heatmaps

 		
 Random matrix and color map init

 		
 Basic plot

 		
 Add numbers to the heatmap

 		
 Using Boundaries for the colors

 		
 Normalising the colors

 		
 A dendrogram from clustering the data

 		
 A simple clustered heatmap, look at the code for customisation

 		
 Misc. Plots Tips

 		
 Trim Figure

 		
 Examples of the mgkit.db package

 		
 Imports

 		
 Download Example GFF

 		
 GFF Annotations

 		
 semidbm

 		
 Using MongoDB

 		
 MGKit GFF Specifications

 		
 Reserved Values

 		
 Library Reference

 		
 mgkit package

 		
 Subpackages

 		
 Submodules

 		
 Module contents

 		
 mgkit.align module

 		
 mgkit.consts module

 		
 mgkit.counts package

 		
 Submodules

 		
 Module contents

 		
 mgkit.counts.func module

 		
 mgkit.counts.glm module

 		
 mgkit.counts.scaling module

 		
 mgkit.db package

 		
 Submodules

 		
 Module contents

 		
 mgkit.db.dbm module

 		
 mgkit.db.mongo module

 		
 mgkit.filter package

 		
 Submodules

 		
 Module contents

 		
 mgkit.filter.common module

 		
 mgkit.filter.gff module

 		
 mgkit.filter.lists module

 		
 mgkit.filter.reads module

 		
 mgkit.filter.taxon module

 		
 mgkit.graphs module

 		
 mgkit.io package

 		
 Submodules

 		
 Module contents

 		
 mgkit.io.blast module

 		
 mgkit.io.fasta module

 		
 mgkit.io.fastq module

 		
 mgkit.io.gff module

 		
 mgkit.io.glimmer module

 		
 mgkit.io.snpdat module

 		
 mgkit.io.uniprot module

 		
 mgkit.io.utils module

 		
 mgkit.kegg module

 		
 mgkit.logger module

 		
 mgkit.mappings package

 		
 Submodules

 		
 Module contents

 		
 mgkit.mappings.cazy module

 		
 mgkit.mappings.eggnog module

 		
 mgkit.mappings.enzyme module

 		
 mgkit.mappings.go module

 		
 mgkit.mappings.pandas_map module

 		
 mgkit.mappings.taxon module

 		
 mgkit.mappings.utils module

 		
 mgkit.net package

 		
 Submodules

 		
 Module contents

 		
 mgkit.net.embl module

 		
 mgkit.net.pfam module

 		
 mgkit.net.uniprot module

 		
 mgkit.net.utils module

 		
 mgkit.plots package

 		
 Submodules

 		
 Module contents

 		
 mgkit.plots.abund module

 		
 mgkit.plots.boxplot module

 		
 mgkit.plots.colors module

 		
 mgkit.plots.heatmap module

 		
 mgkit.plots.utils module

 		
 mgkit.simple_cache module

 		
 mgkit.snps package

 		
 Submodules

 		
 Module contents

 		
 mgkit.snps.classes module

 		
 mgkit.snps.conv_func module

 		
 mgkit.snps.filter module

 		
 mgkit.snps.funcs module

 		
 mgkit.snps.mapper module

 		
 mgkit.taxon module

 		
 mgkit.utils package

 		
 Submodules

 		
 Module contents

 		
 mgkit.utils.common module

 		
 mgkit.utils.dictionary module

 		
 mgkit.utils.sequence module

 		
 mgkit.utils.trans_tables module

 		
 mgkit.workflow package

 		
 Submodules

 		
 Module contents

 		
 mgkit.workflow.add_gff_info module

 		
 Uniprot Command

 		
 Coverage Command

 		
 Adding Coverage from samtools depth

 		
 Uniprot Offline Mappings

 		
 Kegg Information

 		
 Expected Aminoacidic Changes

 		
 Adding Count Data

 		
 Adding Taxonomy from a Table

 		
 Adding information from Pfam

 		
 Changes

 		
 mgkit.workflow.blast2gff module

 		
 Uniprot

 		
 BlastDB

 		
 Changes

 		
 mgkit.workflow.extract_gff_info module

 		
 sequence command

 		
 dbm command

 		
 mongodb command

 		
 gtf command

 		
 split command

 		
 cov command

 		
 Changes

 		
 mgkit.workflow.fasta_utils module

 		
 split command

 		
 translate command

 		
 uid command

 		
 Changes

 		
 mgkit.workflow.fastq_utils module

 		
 Commands

 		
 Changes

 		
 mgkit.workflow.filter_gff module

 		
 Value Filtering

 		
 Overlap Filtering

 		
 Per Sequence Values

 		
 Coverage Filtering

 		
 Changes

 		
 mgkit.workflow.hmmer2gff module

 		
 Changes

 		
 mgkit.workflow.json2gff module

 		
 mongodb command

 		
 mgkit.workflow.sampling_utils module

 		
 Resampling Utilities

 		
 mgkit.workflow.snp_parser module

 		
 Changes

 		
 mgkit.workflow.taxon_utils module

 		
 Last Common Ancestor (lca and lca_line)

 		
 Filter by Taxon

 		
 Convert Taxa Tables to HDF5

 		
 Changes

 		
 mgkit.workflow.utils module

 		
 mgkit

 		
 mgkit package

 		
 Changes

 		
 0.4.0

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 Tests

 		
 0.3.4

 		
 Scripts

 		
 Python3

 		
 0.3.3

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 0.3.2

 		
 0.3.1

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Deprecated

 		
 0.3.0

 		
 Added

 		
 Changed

 		
 0.2.5

 		
 Changed

 		
 Added

 		
 0.2.4

 		
 Changed

 		
 Fixed

 		
 0.2.3

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.2.2

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.2.1

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 Removed

 		
 0.2.0

 		
 0.1.16

 		
 0.1.15

 		
 0.1.14

 		
 0.1.13

 		
 0.1.12

 		
 0.1.11

_images/examples_plots_boxplot_14_0.png
label 81 © 0 |] |
label 7- |] |

label 6 - — o o
label 51 | 0] |
label 41 |] |
label 31 |] |
label 2 - T |
label 1- 0 o | | .

label 0- | B

17000 17500 18000 18500 19000 19500 20000 20500

_images/examples_plots_boxplot_16_0.png
20500 B

20000+ —

19500

19000

18500

18000 1

17500-

17000-

_images/examples_plots_boxplot_10_0.png
20500 _

20000+

19500

19000

18500

18000

17500-

17000-

_images/examples_plots_boxplot_12_0.png
20500

20000+

19500

19000

18500

18000

17500-

17000-

_images/examples_plots_boxplot_22_0.png
22000+

21000+

20000+

19000

18000

17000+

% | |
| |
N N N N > N N N N
AS) AS) AS) AS) AS) AS) AS) AS) AS)
N N N N N N N N N

_images/examples_plots_boxplot_24_0.png
B Hmn omn e |

e L —

—+H W) -

&1 L0 H—# -

H—&—H1 1HI1 I

TN s

il

= e BN et

17000

17500

18000

18500 19000 19500 20000

20500

_images/examples_plots_boxplot_18_0.png
20500 _

20000+ —

19500

19000

18500

18000 1

17500-

17000-

_images/examples_plots_boxplot_20_0.png
20500+

@
o
20000 ® o
19500 l i
19000 '
(=
18000
& : ‘
17500
o
17000 , , , , , , , , ,
Q ~N \ ’b 0 © A o)
~0Q> ~0Q> ~0Q> ~0Q> ~0Q> ~0Q> ~0Q> ~0Q> ~0Q>
o o o o o o o o o

_images/examples_plots_boxplot_4_0.png
20500 -

20000 - S

19500 A

19000 A

18500 A

18000 A

17500 A

17000 -

_images/examples_plots_boxplot_6_0.png
20500 -

20000 - S

19500 A

19000 A

18500 A

18000 A

17500 A

17000 -

_images/examples_plots_boxplot_8_0.png
8 1°9e|

L 1°9e]|

AR

G °qe

AR

RASSE]

AR

T 1=9e|

0 l=qe|

20500 -

20000 -

19500 A

19000 A

18500 A

18000 A

17500 A

17000 -

_images/examples_plots_heatmap_13_1.png
486.0 482.0 PN 434.0 BSSOMON 488.0 475.0 BSSSMON 502.0 476.0 1524.0° 418.0 472.0 476.0 15230 BS40N 475.0 487.0 1 524.0 | 497.0 - 19
458.0 BOSSIONEEEEEEN 467.0 493.0 510.0 490.0 @ 522.0 481.0 | 526.0 497.0 BSSGNON 503.0 472.0 507.0 BSSOON 452.0 puE 519.0 | 484.0 | 18
500.0 N 496.0 443.0 471.0 | 514.0 474.0 502.0 S48 495.0 517.0 505.0 | 509.0° 470.0 | 509.0 | 460.0 488.0 479.0 [EEEESSEINON- 17
502.0 502.0 '514.0 492.0 @S46MON 519.0 483.0 497.0 503.0 BSSONON 480.0 410.0 WSSZON 505.0 520.0 | 484.0 495.0 457.0 489.0 BSSSION- 16
495.0 EEEEEEEREENNN 4/2.0 485.0 484.0 pSSON 501.0 464.0 506.0 "510.0° 478.0 1 5130 482.0 464.0 449.0 449.0 | 502.0 F517.0 | 471.0 - 15
488.0 494.0 ' 515.0 499.0 @ 516.0 BSS4ANONNSSINON 489.0 484.0 499.0 468.0 B543:08 513.0 499.0 517.0 480.0 502.0 SN 449.0 527.0 |- 14
SOOROR 524.0 521.0 518.0 474.0 | 510.0 502.0 507.0 478.0 | 515.0 BSSONON 479.0 | 523.0 BSAAONENEEEEN 4/1.0 NSNS 440.0 | 513.0 ESA2008- 13
OSZ20N 475.0 475.0 1519.0 489.0 495.0 446.0 458.0 485.0 MSS2M0N 504.0 EEENEN 465.0 | 515.0° 484.0 498.0 @ 526.0 462.0 WSZNON 518.0 12
550108 507.0 505.0 500.0 493.0 501.0 479.0 502.0 ' 510.0 467.0 472.0 B536:08 512.0 505.0 EGEEEE 500.0 ESSSESE 508.0 473.0 489.0 - 11
485.0 501.0 mEmEEEE 495.0 445.0 BSSSIONEEENEEE 490.0 506.0 @ 526.0 BSSSWON 478.0 465.0 484.0 480.0 489.0 ' 522.0 BSSSION 518.0 492.0 | 10
BEEOS 2000420 513.0 1 482.0 | 515.0 484.0 507.0 469.0 | 513.0 456.0 476.0 478.0 pS46N 477.0 506.0 462.0 506.0 BS4S:08 520.0 - 9
523.0 497.0 490.0 | 510.0 500.0 518.0 502.0 475.0 BSSCIOENEEEN 453.0 [528.0 NN 502.0 501.0 479.0 BSSSMOR 511.0 467.0 452.0 - 8
477.0 484.0 477.0 pSSON 497.0 498.0 494.0 '512.0 478.0 469.0 pumEmEN 504.0 477.0 459.0 pumEmaE 479.0 [519.0° 485.0 BS40NON 463.0 - 7
485.0 503.0 1 524.0 488.0 514.0 443.0 498.0 459.0 mS25:08 510.0 BSSINONRSSSION 500.0 478.0 485.0 483.0 453.0 476.0 495.0 | 513.0 | 6
517.0 BSSOION 475.0 MSSHRON 429.0 EEEEEEEEEENEEN 450.0 SN 468.0 463.0 487.0 476.0 491.0 505.0 444.0 | 524.0° 504.0 465.0 | 522.0 5
D480N 503.0 480.0 [512.0 480.0 | 525.0° 496.0 499.0 489.0 @ 509.0 487.0 | 524.0 497.0 @ 522.0 BSSMON 483.0 439.0 EEEEEENSS2Z0N 462.0 - 4
499.0 486.0 473.0 446.0 504.0 514.0 499.0 494.0 495.0 BSSEON 494.0 @ 522.0 FSS/A0 mEGEENN 519.0 504.0 489.0 500.0 499.0 504.0 | 3
526.0 468.0 BS2O0M0W 496.0 482.0 495.0 451.0 500.0 1 522.0 476.0 | 524.0 465.0 496.0 478.0 BSSONON 495.0 BSSVRON 400.0 EEEEEESSSSI0N- 2
476.0 445.0 468.0 457.0 1'527.0 BS4AON 478.0 502.0 BS40NON 488.0 493.0 BSSOMON 516.0 521.0 523.0 | 495.0 476.0 484.0 [523.0(479.0 - 1
470.0 497.0 496.0 BSASION 496.0 BOANONNSSAON 424.0 498.0 481.0 503.0 478.0 MSSONON 484.0 507.0 491.0 483.0 421.0 477.0 .- O
©O H N M ¥ N © ~ ® O O H N Mm § 1 © ~ © O
— — — — — — — — — —

_images/examples_plots_heatmap_15_1.png

_images/examples_plots_heatmap_10_1.png
486 482 577 434 530 488 475 538 502 476 524 418 472 476 523 540 475 487 524 497 +19
458 535 582 467 493 510 490 522 481 526 497 530 503 472 507 550 452 575 519 484 +18
500 555 496 443 471 514 474 502 542 495 517 505 509 470 509 460 488 479 593 541 17/
502 502 514 492 546 519 483 497 503 530 480 410 532 505 520 484 495 457 489 535 - 10
495 564 556 472 485 484 530 501 464 506 510 478 513 482 464 449 449 502 517 471 15
488 494 515 499 516 534 531 489 484 499 468 543 513 499 517 480 502 557 449 527 14
550 524 521 518 474 510 502 507 478 515 530 479 523 547 563 471 559 440 513 542 =t 13
532 475 475 519 489 495 446 458 485 532 504 554 465 515 484 498 526 462 541 518 12
550 507 505 500 493 501 479 502 510 467 472 536 512 505 565 500 555 508 473 489 11
485 501 563 495 445 535 557 490 506 526 538 478 465 484 480 489 522 533 518 492 +10
574 532 542 513 482 515 484 507 469 513 456 476 478 546 477 506 462 506 545 520 9O
523 497 490 510 500 518 502 475 550 554 453 528 553 502 501 479 535 511 467 452 +8
477 484 477 537 497 498 494 512 478 469 554 504 477 459 554 479 519 485 540 463 +7/
485 503 524 488 514 443 498 459 529 510 531 535 500 478 485 483 453 476 495 513 +06
517 530 475 531 429 552 557 459 561 468 463 487 476 491 505 444 524 504 465 522 +§5
548 503 480 512 480 525 496 499 489 509 487 524 497 522 537 483 439 556 532 462 4
499 486 473 446 504 514 499 494 495 531 494 522 537 563 519 504 489 500 499 504 |3
526 468 529 496 482 495 451 500 522 476 524 465 496 478 530 495 537 400 554 538 2
476 445 468 457 527 547 478 502 540 488 493 550 516 521 523 495 476 484 523 479 +1
470 497 496 548 496 544 532 424 498 481 503 478 530 484 507 491 483 421 477 558)
© < &N m & 1 © ~ ® ©o o +H «~ ®m < 1’ © ~ © o
— — — — — — — — — —

_images/examples_plots_heatmap_12_1.png
574.0

523.0

477.0

485.0

517.0

548.0

499.0

526.0

476.0

470.0

532.0

497.0

484.0

503.0

530.0

503.0

486.0

468.0

445.0

497.0

542.0

490.0

477.0

524.0

475.0

480.0

473.0

529.0

468.0

496.0

513.0

510.0

537.0

488.0

531.0

512.0

446.0

496.0

457.0

548.0

482.0

500.0

497.0

514.0

429.0

480.0

504.0

482.0

527.0

496.0

515.0

518.0

498.0

443.0

552.0

525.0

514.0

495.0

547.0

544.0

484.0

502.0

494.0

498.0

557.0

496.0

499.0

451.0

478.0

532.0

507.0

475.0

512.0

459.0

459.0

499.0

494.0

500.0

502.0

424.0

469.0

550.0

478.0

529.0

561.0

489.0

495.0

522.0

540.0

498.0

513.0

554.0

469.0

510.0

468.0

509.0

531.0

476.0

488.0

481.0

_images/examples_plots_heatmap_21_0.png
first

second

third

fourth

fifth

_images/examples_plots_heatmap_24_1.png

_images/examples_plots_heatmap_17_1.png

_images/examples_plots_heatmap_19_0.png
fifth

fourth

third

second

first

_images/examples_plots_heatmap_28_0.png
o MMM 00O OOOTS (AN 00NN LNOLN—IO00MLNOTO0O. NSO MNO . 00

- 6€

- €€

- LE

- 9¢

- V€

- 0€

FLE

- 8¢

vl

- 61T

Ba%

-0

rLC

- 8€

- 91

L

-6

L1
- L1

B

KAa%

- GE

1%

6

1) %4

1%

-l

9t

€

-0

- 81

M

I_'|:'—_|_I

_images/examples_plots_heatmap_4_0.png

_images/examples_plots_heatmap_26_0.png

_images/examples_plots_misc-plots_2_1.png
first

second

third

fourth

fifth

_images/examples_plots_heatmap_7_1.png

_images/examples_plots_misc-plots_2_0.png

_images/pipeline_Exploring-Metagenomic-Data_33_1.png
i
—
HI o

L s9|elqolaeueIleN
L S9|edelajo|eH

- S9|elI[9150A101Q

- S9|eJda30eqopoyy

L s9jelsployung

- S9|eyaeydoulds

- S9|elqoJolyd

- eljUspoy

- S9|eX3|4040|YD

- S9|eli30eqo|eH

- S9jewlayl

L S9|RUOLIQIN04NS3(

- S9|e390Awoieyddesoziyds
- S9|e||94na35ed

L s9|edisselg

L S9jelqoJddiwoueyis
- s9|ebojoway

L S9|eperUOWOpPNaS

- S9|ejewsejdowsay
- s9|edlyinby

L S9|e||10eq030ET

L S9|epeuowoInyNsaq
- S9|elialdeqauilo)

- S9|elqoziyy

L S9|22D020Yd3UAS

L S93ewlld

- S9|eajosdowuay

- so|edAdoueyiap

- S9|eq0|04INS

- S9|eJda3deqolaRUROWIRY L
L $9|©220204Nn}NsaQ

L S9|euldiesoueyidn
ECTCIENRI=le [SEMTE

- SO|eIpLISo|D

L S9|epI0220d0|eyaQ

- S9|eqo|boaeyduy

- S9|elia30eqoueyian
- S9|e||idegd

- S9|e220d0WUIBY L

L S9|eD20d0URYIDN

700
600 -
500

o
(@)
4

S3UN0)

300 1
200 1
100 1

Order

_images/pipeline_Exploring-Metagenomic-Data_36_1.png
— 01m
— 16m
— 32m
— 50m

0.16

0.14 -

0.12 -

0.10 A

T
[ce]
o
o

Aouanbau4

0.06

0.04 -

0.02 A

0.00 -

30

LN
o

Counts

_images/lca-tablet.png
y

3 a 0
Blacie Giueh i s bk Al S b 5 A Sl i i

15,933 015,933

_images/pipeline_Exploring-Metagenomic-Data_65_1.png
Transferases - Transferring phosphorus-containing groups [EC
Ligases - Forming carbon-oxygen bonds [EC

Hydrolases - Acting on acid anhydrides [EC

Ligases - Forming carbon-nitrogen bonds [EC

Transferases - Transferring one-carbon groups [EC

Hydrolases - Acting on ester bonds [EC

Lyases - Carbon-oxygen lyases [EC

Hydrolases - Acting on peptide bonds (peptidases) [EC
Hydrolases - Acting on carbon-nitrogen bonds, other than peptide bonds [EC
Oxidoreductases - Acting on the CH-OH group of donors [EC
Oxidoreductases - Acting on the aldehyde or oxo group of donors [EC
Ligases - Forming carbon-sulfur bonds [EC

Lyases - Carbon-carbon lyases [EC

Oxidoreductases - Acting on a sulfur group of donors [EC
Transferases - Glycosyltransferases [EC

Transferases - Acyltransferases [EC

Transferases - Transferring alkyl or aryl groups, other than methyl groups [EC
Transferases - Transferring nitrogenous groups [EC
Isomerases - Intramolecular transferases [EC

Ligases - Forming phosphoric ester bonds [EC

Isomerases - Other isomerases [EC 5.

Oxidoreductases - Acting on NADH or NADPH [E

Isomerases - Intramolecular oxidoreductases [E

Transferases - Transferring sulfur-containing groups [E
Oxidoreductases - Acting on hydrogen as donors [EC
Oxidoreductases - Acting on CH or CH(2) groups [EC
Oxidoreductases - Acting on the CH-CH group of donors [E
Isomerases - Racemases and epimerases [E

Lyases - Carbon-nitrogen lyases [E

Oxidoreductases [E

Oxidoreductases - Acting on the CH-NH(2) group of donors [EC
Hydrolases - Glycosylases [EC

Oxidoreductases - Acting on iron-sulfur proteins as donors [EC 1.1
Transferases - Transferring aldehyde or ketonic groups [EC
Ligases - Forming carbon-carbon bonds [EC

Isomerases - Intramolecular Iyases [EC

Oxidoreductases - Oxidizing metal ions [EC 1.1

Hydrolases - Acting on ether bonds [EC 3.

Lyases [EC

Lyases - Phosphorus-oxygen lyases [EC 4.

Lyases - Carbon-sulfur lyases [EC 4.

5.

3.

1.

9

nnnHHnnn

Enzyme Class

2.
6.
5.

A4

Isomerases - Cis-trans-isomerases [EC
Hydrolases - Acting on carbon-carbon bonds [EC
Oxidoreductases - Acting on the CH-NH group of donors [EC
Oxidoreductases - Other oxidoreductases [EC 1.
Oxidoreductases - Acting on other nitrogenous compounds as donors [EC 1.
Oxidoreductases - Acting on a peroxide as acceptor [EC 1.1
Oxidoreductases - Acting on single donors with incorporation of molecular oxygen (oxygenases). The oxygen incorporated need not be derived from O(2) [EC 1.1
Hydrolases [EC
Oxidoreductases - Acting on superoxide as acceptor [EC 1.1
Hydrolases - Acting on carbon-sulfur bonds [EC 3.1
Oxidoreductases - Catalyzing the reaction X-H + Y-H = 'X-Y' [EC 1.2
Oxidoreductases - Acting on a heme group of donors [EC 1.
Transferases [EC
Lyases - Other lyases [EC 4.9
Transferases - Transferring molybdenum- or tungsten-containing groups [EC 2.1
Oxidoreductases - Acting on paired donors, with incorporation or reduction of molecular oxygen. The oxygen incorporated need not be derived from O(2) [EC 1.1
Ligases [EC
Hydrolases - Acting on phosphorus-nitrogen bonds [EC 3.

U

7]
1]
6.-]
3]
1]
1]
2]
4]
5.-]
1]
2]
2]
1]
8.-]
4]
3]
5.-]
6.-]
4]
5.-]
9.-]
6.-]
3]
8.-]
12.-]
17.-]
3]
1]
3]
1.-]
4]
2]
8.-]
2.-]
4.-]
5.-]
6.-]
3.-]
4.1
6.-]
4.-]
2.]
7.]
5.-]-
7.]
7.]
1.-]-
3.-]-
3.-]-
5.-]-
3.-]-
1.-]-
9.-]-
2.-]-
9.-]-
0.-]-
4.1
6.-1-
9.-]-

WWUWWWUW

06500
Counts

_images/pipeline_Exploring-Metagenomic-Data_75_1.png
Dehalococcoidales -

Alteromonadales A

Synechococcales -

Schizosaccharomycetales -

Desulfurococcales 1

Order

Methanobacteriales -

Oceanospirillales |

Thermococcales -

Methanococcales

Sulfolobales -

0.0

0.2

0.4

PN/pS

0.6

0.8

_images/pipeline_Exploring-Metagenomic-Data_38_1.png
&0
50
E
10

Dehalococcaidales
Methananacteriaies
Archacogiobaes

el
henereny,

I - Primates.
s
e
- Aquificales
R s
et
D,
s
e
Eri
e
e
Rur
e a—

Methanococcales
Thermococcaies
Bacilaies

oam som 16m m

M

_images/pipeline_Exploring-Metagenomic-Data_54_1.png
1000
=0
&0
00

200

-0

Translation, ribosomal structure and biogenesis
Energy production and conversion
Replication, recombination and repair
Amino acid transport and metabolism
General function prediction only
- ytoskeleton
~Chromatin structure and dynamics.
-RNA processing and modifcation
~Cell motilty
-Signal transduction mechanisms
- Defense mechanisms
~Cellcycle control, el division, chromosome partitioning
- Secondary metabolites biosynthesis, ransport and catabolism.
- Intracellular traffcking, secretion, and vesicular transport
- Lipid transport and metabolism
~Function unknown
- Cell wallimembrane/envelope biogenesis
~Inorganic on transport and metabolism
- Transcription
- Coenzyme transport and metabolism
Posttranslational modification, protein tumover, chaperones
Nucleotide transport and metabolism

Carbohydrate transport and metabolism

_images/pipeline_Exploring-Metagenomic-Data_82_1.png
Functional Ca